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Quantum computation for physical modeling

Jeffrey Yepez

Air Force Research Laboratory, 29 Randolph Road, Hanscom AFB, MA 01731, USA

Foreword ment of states) can be used to speedup numerical sim-
ulations of interest to computational physicists.

One of the most famous American physicists of the Notwithstanding the veritable stampede towards
twentieth century, Richard Feynman, in 1982 was the computer science related applications by most re-
first to propose using a quantum mechanical comput- searchers in the field of quantum computing, a few
ing device to efficiently simulate quantum mechanical maverick physicists have developed some quantum
many-body dynamics [1-3], a task that is exponen- algorithms to model quantum mechanical systems.
tially complex in the number of particles treated and A starting point for this development was a prob-
is completely intractable by any classical computing lem posed by Feynman himself to show that the one
means for large systems of many particles. In the two dimensional Dirac equation could be modeled by a
decades following his work, remarkable progress has single-speed particle traveling in a two-dimensional
been made both theoretically and experimentally in the space-time as a sum over zigzag paths of straight line
new field of quantum computation [4,5]. Ironically, elements [6], witlaJhe amplitude of a particular path
however, most of the theoretical progress in quan- contributing to the kernel by the number of "colli-
tum computing has developed within the purview of sions" or comers along that zigzag path. This quan-
the computer scientist with the principle applications turn lattice gas representation of quantum mechanics
of efficient quantum information processing related to is equivalent to the well known path integral repre-
cryptography and secure quantum communication.' In sentation.2 A quantum lattice gas accounts for all con-
an effort return to Feynman's original direction, the tributing paths by simultaneously evolving many par-
Air Force Research Laboratory and the Air Force Of- ticles in a unitary fashion. Therefore, instead of sum-
fice of Scientific Research has established a multidis- ming (or integrating over) paths as individual entities,
ciplinary basic research theme called Quantum Com- all contributing paths are effectively simulated in one
putationfor Physical Modeling to explore quantum al- fell swoop as a combined field quantity. In the end, the
gorithms to model dynamical physical systems. Our collisional interaction between particles in the quan-
goal is to establish a practical and generic means by turn lattice representation can be described by an ef-
which the power of quantum mechanics (that is, quan- fective field theory (the Dirac equation in this particu-
tum parallelism due to the superposition and entangle- lar case) at the large-scale called the continuum limit.

Beginning in the mid 1990's, a contemporaneous

E-mail address: jeffrey.yepez@hanscom.af.mil (J. Yepez). series of quantum lattice-gas algorithms to model
URL address: http://qubit.plh.af.mil. the relativistic Dirac equation, equivalent to Feyn-
References to specific publications in these subjects are so

ubiquitous in the quantum computing literature that we do not
include any here. Comprehensive collections of quantum computing 2 A solution to Feynman's "quantum lattice gas" problem was
papers have been recently published [4,5]. published in 1984 by Jacobson and Schulman [7].

0010-4655/02/$ - see front matter © 2002 Published by Elsevier Science B.V.
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man's original algorithm, were published by Succi [8, in an array interconnected by nearest-neighbor clas-
9], Bialynicki-Birula [10], and Meyer [11-15]. Fur- sical communication channels. We call this type of
thermore, a series of papers on modeling the non- quantum mechanical device a type-H quantum com-
relativisitic Schr6edinger equation were published by puter [26]. This hybrid architecture, combining clas-
Boghosian and Taylor [16-18] and by Yepez and sical massively parallelism and quantum parallelism,
Boghosian [19], the latter article appearing in this is- is suited to modeling dynamical physical systems,
sue. Our present goal in the Quantum Computation for such as turbulent Navier-Stokes fluids [21-23,25]. In
Physical Modeling project is accelerate this algorith- collaboration with the Nuclear Engineering Depart-
mic developmental effort that has occurred over the ment of MIT, we have developed a prototype type-II
past decade. quantum computer based on spatial nuclear magnetic

In fact, we hope to go further in the application of resonance spectroscopy. We use a gradient magnetic
this quantum algorithmic method. We have developed field to distinguish individual layers in a liquid sam-
new efficient quantum lattice-gas algorithms to model pie so that each layer effectively becomes an indi-
classical dynamical systems [20-23]. Meyer also ad- vidual quantum computing node comprising an en-
dresses this subject in his article on physical quan- semble of molecules. The first simulation of a quan-
tum algorithms contained in this issue [24]. In the tum lattice-gas model for the one-dimensional diffu-
past, we have considered quantum algorithms suited sion equation [22] has been carried out on this quan-
to globally phase-coherent quantum computers [25], tum computer prototype using the atomic spin-state of
however our focus is presently on those quantum al- Carbon-13 and Hydrogen nuclei within a linear array
gorithms suited to implementation on locally phase- of chloroform molecules [34]. This milestone repre-
coherent quantum computers that are technologically sents the first physical simulation to date on a quantum
much simpler to experimentally implement [26]. This computer and is contained in this issue. A subsequent
program to use one quantum mechanical system to paper presenting an improved version of our type-II
model another quantum mechanical system or clas- quantum computer prototype, that corrects for various
sical system can perhaps best be described as effi- implementation errors and uses better quantum con-
cient analog computing, which in this context may be trol, is also in preparation [35].
termed analog quantum computing. The rather rapid proof-of-concept achieved by spa-

The principle technological obstacle to globally tial nuclear magnetic resonance spectroscopy of a
phase-coherent quantum computation is the problem type-II quantum computer has led to interest in the
of the uncontrolled decoherence of the quantum com- subject by the Office of the Secretary of the Air Force
puter's wave function. The quantum computing com- and the House Appropriations Committee of the US
munity at large, following the traditional computer sci- Congress leading in turn to a strong commitment to
entist's mindset for correcting bit-flip errors using re- the field of quantum computation for physical mod-
dundancy, has been investing much theoretical work eling by the Department of Defense. Our new quan-
in attempts to develop generalized methods for quan- tum computing research theme is supported by sev-
tum error correction of bit-flip and phase-change er- eral directorates of the Air Force Office of Scientific
rors [27-29]. As an expedient alternative to this cum- Research with about two dozen university research
bersome approach, as demonstrated by the advent of projects across the country to date. The design and
several nuclear magnetic resonance quantum comput- construction of several new type-Il quantum computer
ing experiments [30-33], it is possible to avoid bit-flip prototypes are now underway using various technolo-
and phase-change errors altogether: Keep the individ- gies including superconducting electronics and quan-
ual quantum computing elements small enough so that tum optics for example.
all computation occurs within a single spin-spin deco- We have established a new annual workshop se-
herence time where bit-flip and phase-change errors ries dedicated to this subject of quantum compu-
are irrelevant. tation for physical modeling (see our web site at

Given this possibility of avoiding errors, it is nat- http://qubit.plh.af.mil for more details). The first work-
ural to consider building a large-scale quantum com- shop in this series was held in the fall of 2000 in North
puting system by connecting many small ones together Falmouth in Cape Cod, Massachusetts and the fol-
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lowing collections of articles contained in this issue [201 J. Yepez, Lattice-gas quantum computation, Intemat. J. Mod-

were contributed from this workshop. Our goal for this em Phys. C 9 (8) (1998) 1587-1596, Proceeding of the 7th

workshop series is to annually publish a collection of International Conference on the Discrete Simulation of Fluids,
such contributed articles, to review our progress, and University of Oxford.

[21] J. Yepez, Quantum computation of fluid dynamics, in: C.PR

to provide an open forum for new collaborators to join Williams (Ed.), Quantum Computing and Quantum Communi-

us in this activity. cations, Lecture Notes in Comput. Sci., Springer-Verlag, 1999,
p. 480, First NASA International Conference, QCQC'98, Palm
Springs, CA, February 17-20, 1998, Selected Papers.
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Abstract

Presented is quantum lattice-gas model for simulating the time-dependent evolution of a many-body quantum mechanical
system of particles governed by the non-relativistic Schr6dinger wave equation with an external scalar potential. A variety of
computational demonstrations are given where the numerical predictions are compared with exact analytical solutions. In all
cases, the model results accurately agree with the analytical predictions and we show that the model's error is second order
in the temporal discretization and fourth order in the spatial discretization. The difficult problem of simulating a system of
fermionic particles is also treated and a general computational formulation of this problem is given. For pedagogical purposes,
the two-particle case is presented and the numerical dispersion of the simulated wave packets is compared with the analytical
solutions. © 2002 Published by Elsevier Science B.V.

Keywords: Schrfdinger wave equation; Quantum computing; Quantum lattice gas; Quantum mechanics; Computational physics

1. Introduction approach is based on a two-component complex field
defined on a discrete spacetime lattice where unitary

Feynman's work regarding quantum mechanical matrices act locally on the field causing its temporal
computers used to simulate physical quantum me- evolution in discrete time steps. Using such a spatially
chanical behavior in a numerically efficient way [1-3] discrete field makes it possible to computationally rep-
has subsequently led to several series of research pa- resent, in the long wavelength limit of modes in the
pers concerned with a variety of details involving the discrete system, the dynamical time-dependent evolu-
particular quantum algorithm that best represents the tion of a continuous wave function in a manner that is
Feynman path integral [4,5]. The quantum algorithmic numerically efficient.

In 1994 Bialynicki-Birula presented a general quan-
• This work is supported by the Air Force Office of Scientific tum algorithmic approach of this kind for modeling

Research under the Quantum Computation for Physical Modeling the Weyl, Dirac, and Maxwell equations on a body-
initiative, centered cubic lattice in three-dimensions [6]. In a

* Corresponding author. series of papers on simulating the one-dimensional
E-mail addresses: jeffrey.yepez@hanscom.af.mil (J. Yepez),

bruce.boghosian@tufts.edu (B. Boghosian). Dirac equation [7-9], Meyer presented a quantum al-
URL address: http://qubit.plh.af.mil/ (J. Yepez). gorithm similar to that of Bialynicki-Birula with a va-

0010-4655/02/$ - see front matter © 2002 Published by Elsevier Science B1.
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riety of numerical simulations including the effects of for adding both an external scalar and vector poten-
boundary conditions, inhomogeneities, and an exter- tial into a quantum lattice-gas model by analytically
nal scalar potential. Meyer set the quantum algorithm demonstrating the discrete model's invariance with re-
for the discretized path integral in the context of what spect to a general local gauge transformation [ 18].
is called the quantum lattice gas method and his algo- A characteristic feature of all these quantum algo-
rithm is equivalent to the one-dimensional version of rithms, used to model the dynamical behavior of ei-
the Bialynicki-Birula quantum algorithm for the Dirac ther relativistic or non-relativistic quantum particles,
equation. is that the governing wave function is well approxi-

Contemporaneously with Meyer, two other series mated as one approaches the continuum limit where
of papers on quantum lattice-gas models of the one- the grid resolution of the spatial lattice become in-
dimensional non-relativistic Schrbdinger wave equa- finite (the lattice cell size approaches zero). There-
tion were presented by Succi and Benzi [10,11] and fore, from the point-of-view of the modeler, there ex-
by Boghosian and Taylor [ 12-14]. The approach taken ists a "microscopic scale" where the unitary dynamical

by Succi and Benzi is somewhat more computation- rules are locally applied in a discretized fashion and
ally oriented in that they begin with a "kinetic" lat- time advances forward in incremental units in a way
tice Boltzmann equation of motion1 (effectively the that is quite artificial. Yet at the "macroscopic scale",
one-dimensional Dirac equation in the Majorana rep- which corresponds to the long wavelength limit of the

resentation) and show that the Schrbdinger wave equa- dynamical modes in the discrete system, there is an

tion emerges as the governing equation of motion for emergent effective field theory for a complex ampli-

the slow mode in the long wavelength "hydrodynam- tude field, continuous and differentiable in both space

ic" limit. That is, Succi and Benzi observed that the and time, that exactly obeys the physical quantum me-
"macroscopic scale" Schrbdinger wave equation arises chanical equations of motion. At the small scale (char-

from the "mesoscopic scale" Dirac equation in a man- acterized by the lattice cell size) one imagines a sys-

ner quite analogous to how the macroscopic Navier- tem of fermionic particles undergoing local collisions

Stokes hydrodynamic fluid equation arises from the and translation to nearby nodes of the lattice. Each of

mesoscopic kinetic Boltzmann equation through the these fermionic particles occupies a local positional

Chapman-Enskog expansion. state at a specific lattice node with a certain probabil-

Boghosian and Taylor's approach follows more ity amplitude. All the possible locations of the actual

along the lines of Meyer's approach in that their model physical quantum particle are effectively modeled by

is developed as a generalization of the classical lattice the interfering set of probability amplitudes associated

gas method. A kinetic transport equation, now formu- with this system of fermionic particles. That is, all the

lated directly at the "microscopic scale", again leads possible pathways are modeled simultaneously using a

to the Schr6dinger wave equation in the continuum kind of kinetic system of locally interacting fermions

limit. The Boghosian and Taylor quantum lattice gas on the small scale.

model focuses on solving the many-body Schrddinger Seen as a kinetic system then, we may expect that
there exists a local equilibrium configuration of parti-

wave equation with an arbitrary scalar potential in an

arbitrary number of spatial dimensions. They analyti- des. We require that this configuration be an eigen-

cally argue for an exponential numerical speedup aris- ket, with unity eigenvalue, of the local unitary col-

ing from simulation in the many-body sector of the full lision operator that is uniformly and spatially homo-

Hilbert space carried out simultaneously using quan- geneously applied to the lattice-based two-component

tum superposition of states. The Boghosian and Taylor field. Then the dynamical lattice-based system on all
fthe quantum algorithm is also cast explic- lattice nodes undergoes local relaxation towards this

itly for direct implementation of an array of quantum equilibrium configuration. However, unlike a classi-
bits [13]. Polley has recently presented an argument cal kinetic system, the global configuration of particles

does not relax to a single steady-state equilibrium. In-

stead, there are many steady-state global equilibrium
The classical lattice Boltzmann equation was popularized with configurations which effectively are the energy eigen-

its application to computational fluid dynamics [15-171. states of the "macroscopic scale" quantum mechani-
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cal equation of motion modeled by the quantum lattice alent finite difference formulation. Using the micro-
gas. If the quantum lattice gas system is initialized in scopic finite difference equations, we then derive the
any one of the energy eigenstate global configurations, effective field theory at the macroscopic scale where
the macroscopic scale configuration of the system will both the lattice cell size and the update time step ap-
remain fixed in time albeit the microscopic configu- proach zero. Diffusive ordering holds, as is typical for
ration of particles would be continually changing at lattice gas systems, where small-scale temporal fluc-
every unit time step.2 In the end, the Feynman path in- tuations in the wave function go as the square of the
tegral is efficiently and accurately recast as a kinetic magnitude of the small-scale spatial fluctuations. To
dynamical process computed in parallel efficiently on confirm that our derivation is correct and to test the
a spacetime lattice. validity of the quantum lattice gas model, we test the

In this paper we do not argue that the quantum time-dependent dispersion of a free Gaussian packet.
lattice gas dynamical rules represent a local hidden We also test the system when it is initialized in an en-
variable theory of quantum mechanics. Although fun- ergy state, which is a fixed macroscopic scale steady-
damental arguments can be made to limit the possi- state configuration. We find that as we halve the lattice
ble form of the local unitary operator in the quan- cell size (double the spatial resolution) the cumulative
tum lattice gas [6,7], these arguments lead to an al- error in the model drops by a factor of 25.45 = 43.7.
gorithm suited for implementation on a quantum com- Second, in Section 3 we show how an external
puter. In our investigation of a suitable local unitary scalar potential may be modeled in the quantum lattice
collision operator we have found that one quantum gas system by inducing a local phase rotation in the
gate in particular, the square-root-of-swap given be- qubits at each node of the lattice. The qubits at a lattice
low in Section 2.3, is especially useful for model- node are phase rotated by an amount corresponding to
ing the Schrddinger wave equation in that the local the strength of the spatially dependent external poten-
equilibrium configuration discussed above is an eigen- tial at that node. We show how this local phase rota-
ket of this gate and with unity eigenvalue. There- tion, a kind of gauge transformation, produces an ad-
fore, we have selected the square-root-of-swap gate ditional potential energy term in the Schrrdinger wave
as our basic model quantum gate. As demonstrated in equation. We then test the quantum algorithm against
Section 2.6, we find that this quantum gate leads to two well-known cases of harmonic oscillation in a par-
an overall modeling error that is second order in the abolic potential well and quantum scattering off of and
temporal discretization and fourth order in the spatial tunneling through a constant potential energy barrier.
discretization. Another point regarding this particular In both cases, the model behaves as expected.
gate is that when measurements are periodically made Third, in Section 4 we test how well the quantum
of the state of qubits in the system, which destroys lattice gas can simulate the simultaneous dispersion of
quantum superpositions and entanglements in the sys- two fermionic particles. In the case of multiple parti-
tem, the macroscopic scale behavior of the quantum cles, the operational quantum gate sequence to handle
lattice gas system is governed by the classical diffu- the many-body case is identical to the single particle
sion equation [19]. case presented in Section 2. Therefore, the implemen-

This paper is organized as follows. First, in Sec- tation of either situation on a quantum computer would
tion 2 we describe the basic quantum algorithm, in be identical as well, except for state-preparation and
particular, how we encode the wave function, how we measurements. However, since at present no quantum
use two basic quantum gates applied to the qubits at computer exists that can test the algorithm presented
the nodes of the lattice. We first describe the algo- here, we are forced to consider the implementation
rithm using matrices and then we describe an equiv- on a classical computer and here the implementation

for a many-body problem is much more complex than
Given a finite size lattice used for purposes, each lo- for the single-body problem. Nevertheless, we present2 ivn fnie iz lttceusd ormodeling pupss ah1- a general formulation of the quantum gates in a sec-

cal configuration oscillates in time even when the global configura-

tion is a time-independent energy eigenvalue. However, the ampli- ond quantized representation where the basic compu-
tude of the oscillation does approach zero as the lattice size becomes tational operations are creation and annihilation of lo-
infinite, cal particle occupancies. The advantage of such an



J. Yepez, B. Boghosian / Computer Physics Communications 146 (2002) 280-294 283

implementation is that it is straightforward to imple- where cl = (xlIVr) is a complex number. In other
ment the fundamental creation and annihilation opera- words, the basic approach to model the single particle
tion is a way that respects the anti-commutation rela- wave function governed by (1) is to express I4') as
tions for fermionic particles. We demonstrate that the a sum of all the possible ways the particle can be
macroscopic scale behavior of the quantum lattice gas situated on the lattice with a probability amplitude cl
agrees with the exact time-dependent solution of the associated with each possible location jxj).
two-body wave equation. In our model, we assign two qubits to each node

Finally, we conclude this paper with a short de- of the lattice, for a total of 2L qubits in the whole
scription of results and share some lessons we learned quantum computer. The qubits that reside at the lth
after using the quantum lattice gas model extensively, node of the lattice are denoted by Iql0) and Iq',) and
We also point out some future directions that may be they are used to encode the coefficient cl of (2) of
taken to expand the usefulness of the model. the position ket for that node. Each qubit is a two-

level quantum system lqta) = aaO0) + /'lI), where
Ijut I2 + 2 1 for a = 0 or 1 and 0 > 1 > L - 1.

2. Quantum algorithm for a single free particle We consider each qubit to be a container that may
or may not be occupied by the quantum particle. The

We describe the quantum lattice-gas algorithm for quantum particle is said to occupy the ath local state at
modeling the Schrbdinger wave equation by consid- position xi when /l1 = 1. Similarly, the ath local state
ering the simplest case of a single free particle in a at position xj is said to be empty when f3J = 0.
one-dimensional space. In this simple case, the wave To see how the qubit encoding works, we write
function VI(x, t) obeys the following partial differen- 14') in the number representation. In the number
tial equation in the position representation representation, each basis state is expressible as the ket

ih '(x, t) h,2 a 2 4(x,t) Iononin .n'n{n), where nl= 0 or I for all I

at 2m ax 2  
' (I) and a. The Boolean variables n a are called the number

where h is Planck's constant and m is the mass of variables and they correspond to a binary indexing of

the quantum particle. Here * (x, t) is a continuous the basis states in the number representation. Since we

probability amplitude field (e.g., a continuous complex are concerned with modeling the one-particle wave

field). equation, we need consider only a subset of all the
basis states where only one of the number variables

2.1. Encoding the wave function is 1 and all the rest are 0. This subset of all the basis
states is called the one-particle sector. There are 2L

To "program" a quantum computer to simulate (1), such combinations and we shall label these with the
it is necessary to first formulate an encoding scheme binary encoding formula 1221±a), for a = 0, 1 and
where a collection of qubits is used to store the value 0 > I > L - 1. Therefore, the system ket in the number
of the wave function. Since the number of qubits in representation can be written as
any quantum computer is necessarily a finite number, L-1 I
the wave function will have to be approximated in 10') = E L421+a12 2 1+a), (3)
the usual way by discretizing a physically continuous 1=0 a=0
amplitude field into an artificially discrete and finite
set of complex numbers. To do this, let us begin with where each x 21+a is a probability amplitude (e.g.,
a one-dimensional spatial lattice with L number of complex number).
nodes. With each node of the lattice we associate a
position basis ket denoted by Ix,), where 0 l > responding basis states in the number representation

L - 1. The discretized system ket in the position basis 1221) and 1221+1). There are two interfering possibil-

is ities for a particle to occupy the lth position on the

L-1 lattice. Therefore, the occupancy probability of the lth

1i) = E• ct lx), (2) node is computed by first summing the probability am-
1=0 plitudes of these corresponding basis states and then
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computing the square of the absolute value thereof. In damard gate at the very end of the simulation prior
other words, the coefficient cl in (2) is set equal to the to making a measurement of the wave function so
sum of the on-site coefficients in (3) that a single qubit at each node will encode the

Cl = ý21 + ý21+1. (4) probability amplitude cl = (xl[ap) in (2).

The definition (4) is an essential part of the quantum With two qubits per node, there are four on-site ba-
lattice-gas model presented in this paper. In the section sis kets, 10) 0 10) = (1,0, 0, 0), 10) 9 11) = (0, 1,0, 0),
below, where we analytically predict an effective 11) 9 10) =_ (0, 0, 1,0), and 11) 1) - (0, 0, 0, 1). In
field theory for our artificially discretized model, we the context of a quantum lattice-gas model, the unitary
explain why we need to make this assignment. We matrix U is called the local collision operator and the
will find that (4) is needed for the predicted effective on-site ket Iv) =_ 10) 01 11) + 11) 0 10) = (0, 1, 1,0) is
field theory to accurately approximate the Schrddinger called the number density ket. To have a well behaved
wave equation in the long-wavelength limit, which is local equilibrium associated with the collision process,
also defined below, the local collision operator must have the number den-

sity ket as an eigenvector with unity eigenvalue.
2.2. Formulating a suitable gate sequence

2.3. Matrix representation
We shall require that the algorithmic scheme be

at least second order convergent in space, so that The quantum gate that we use to evolve the wave
as we double the grid resolution (e.g., double the function, which is applied independently on a site-by-
number of qubits) we in turn reduce the numerical site basis, is the square-root-of-swap gate
error due to the field discretization by a factor of one- 1 0 0 0
quarter. With this type of convergence characteristic, o0 1 i i +
we are assured that we can simulate a wave function 2 2 + 2 0 (5)
governed by the Schr6dinger wave equation (1) to any 01 +±. 0
arbitrary degree of accuracy. After we formulate our 0 0 0 -1
algorithmic scheme, we will then a posteriori verify by The reason for calling this the square-root-of-swap
direct numerical simulation that it is indeed at least a gate is that 02 is the swap gate itself
second-order convergent numerical scheme. In fact in g i t i
Section 2.6 we will find that our numerical scheme is (1 0 0
fourth-order convergent with an error that goes as 8x 4 . U = 0 1 0 (6)

To simulate the quantum behavior of the wave 1 0 0)
function, we seek to develop a sequence of 2-qubit \0 0
gate operations that will act on a large collection of The two nontrivial eigenvalues of 17 are X1 = I
qubits in the simplest way. We impose the following and X2 = -i, with eigenvectors jv1) = (0, 1, 1, 0)
four simplifying constraints: and I v2) = (0, - 1, 1, 0), respectively. Also, since (5)

causes mixing only between the single-particle basis
(1) All quantum gate operations are homogeneous kets 10) 0 I1) and I1) 0 10), it conserves particle

and independent of space and time. number. So (5) is an appropriate choice for the local
(2) Only a single quantum gate is used to evolve the collision operator.

wave function and this gate is applied to each The full collision operator, denoted C, which acts
lattice node independently (locality). on the system ket 14r) is formed by a L-fold tensor

(3) To provide communication channels between lat- product over the local collision operators & applied
tice nodes, only the simplest gate is used (e.g., a homogeneously and independently on each node of
swap gate). the lattice

(4) Because the final value of the computed wave L-1
function depends on summing interfering possi- U. (7)
bilities according to (4), we shall use the Had- (7)
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Let us denote the swap operator by , where 2.4. Finite difference formulation
/i and v index any two qubits in the system. The
streaming operator, denoted SI, causes a global shift It is possible to specify the quantum algorithm to
to the right of the first qubit on all the lattice nodes. model the Schr6dinger equation without the use of
Therefore, S1 can be represented by a sequence of matrices. Instead we can write down a set of finite
swap operators acting on nearest neighbors difference equations, which are equivalent to (10),

(L-1)/2 but perhaps simpler to comprehend at first glance.

1= H 2/,2/+2. (8) To do this, let us introduce a new notation for the

1=0 2L probabilities amplitudes ý2I+a in (3). We will
denote the two complex numbers per lattice node by

In matrix form, k• is a 22 x 22 permutation matrix 'po(xl, t) and q91 (xl, t). That is, we have L-pairs
/1 00 0 of complex numbers. Then, the quantum algorithmic

0 0 1 0 (9) operations (14) can be expressed as follows:

0 0 -1! ifmod(n, 4) =0,

The algorithm we use to model the Schr6dinger wave oo(xj, tn) = A*(po(xl, t,- 1) + Ayol (xt, tn- 1),
equation involves multiple applications of the collision (15)

operator interleaved with streaming operations as
follows: if mod(n, 4) = 1,

I ±*(t + r/2))= E'll/fr(t)), (10) (po(XI, tn) = (00(XI-1, tn- 1 ),

where the square root of the evolution operator is 'Pl (X1, tn) = I (X1, tn- -) (16)

l/2 - SIC. (11) if mod(n, 4) =2,

Here ST denotes the transpose of S1 and is the inverse
of Si. Application of SJT causes a global shift to the 'oo(xl, tn) = A tn-) + Aqo1(xt, tn-), (17)
left of the first qubit on all the lattice nodes. One full qot(xt, tn) = A'oo(xl, tn,-) + A*q.,o (xj, tn 1t),
time step of the evolution is and if mod(n, 4) = 3,

V•r(t + r))= Ek [tfr(t)). (12) (X1 tn) = o(Xl+1, tn- 1),

We use four applications of the collision operator in (18)
El because C is the identity operation. Note that S'l (PI (Xl, tn) = (PI (xl, tn-I ),
and C do not commute, otherwise (12) would be a where A = ± + The finite-difference equationtrva evluio equat-dion.nc eqato
trivial evolution equation. pair (15) is equivalent to the local collision operation

Note that in (1 2), our choice of streaming the first C, as is the pair (18). The equation pairs (161 and (18)
qubit was arbitrary. A more balanced algorithmic ap- are equivalent to the streaming operations S and 5 T,

proach would treat both qubits identically. Therefore, respectively.3

we could alternatively define one full time step as This finite-difference representation of the algo-

I'ý (t + r)) =_ E 2 E1 I V1 (t)), (13) rithm is nearly identical to that presented by Boghosi an

where and Taylor in 1997 [14] where the two on-site qubits
E-1/ 2 = ? 2C,(14)

E2 =S2 C S2C (1 )3 Noting that A + A* = 1, this set of finite difference equations

and where the streaming operator $2 causes a global can be expressed in a more compact way

shift to the right of the second qubit on all the lat-
tice nodes. The advantage of using the balanced al-
gorithm (13) is that its error is fourth-order in space W1(XI,tn+t)=Pl(Xttn)+ •1.
whereas for the unbalanced algorithm (12) it is only where c = (-1)' and 020 = A(oI - wo) and Q1 = -Q0, which has

third-order. the standard form of a lattice-gas transport equation.
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are simultaneously streamed to the left and right after the course of the evolution as (po(x, t) = (pl (x, t)
collision operation ½ * (x, t) for all x. The full finite-difference equation

is too long to present here, but is given in Appendix A.
Rpo(x1+1, tn) = A*oO(xl, tn - I)Alo (xi, t,-1), (19) This result is a finite-difference equation for the

vI (xi-l, tn) = -Atoo(xi, tn-I ) + A* (pl (x,, t,- ). following partial differential equation governing the
continuous amplitude field V.'(x, t)

They noted that after four time steps, the total am-

plitude Vf(xl, tn) = q4o(xt, tn) + 01 (xi, tn) satisfies a a '(x, t) i 2 x 2 1 a2 (x, t)

finite-difference equation which approximates the at +0(st2 2 Sr x2 (X 4 )'
Schr6dinger equation in the continuum limit. The (21)
two essential differences between the improved algo-
rithm (15) through (18) presented in this paper and which is an approximation of (1) where the diffusion
the quantum algorithm (19) appearing in [20] is that constant is h/m = 8x2 /Sr and where Bx is the lattice
we have alleviated the problem of the occurrence of cell size.
two non-interpenetrating lattice-gas systems indepen- If one adds a phase angle " to the off-diagonal
dently evolving on different checker-board sub-lattices components of collision operator (5) to obtain a
and we have doubled the numerical accuracy. This is slightly more general collision operator
a problem that occurs when both on-site qubits are si- 1 0 0 0
multaneously streamed because streaming only a sin- 0 1 0 i (I_+ i (2
gle qubit at a time, as was done for the quantum lattice- U 2 1 2 D 0 (22)
gas model of the diffusion equation [19], causes inter- ½ + )e- - 02
actions between all the qubits at each time step. 0 0 0 - I

then the resulting governing partial differential equa-
2.5. The governing partial differential equation tion will have its transport coefficient dependent on

this phase angle as follows:
It is straightforward using a symbolic mathematics

program, and tedious by hand, to use the update rules d/(x, t) +O(3t 2 )
(15) through (18) to algebraically determine the value at
of po and VI at a later time. With the initial wave i 8x 2 a2*(x, t)
function set at to, one complete cycle of the algorithm = 2secC " 2 + (x 4 ). (23)
is completed at t8 (that is, t8 - to =_ r). With the wave
function defined as V'(xl, tn) = Vo(xl, tn) + ýpl (xt, tn), This allows us to simulate a quantum system where
the result after one cycle is4  a particle's mass can be arbitrarily large m = sec C.

Note that in this case the error is cubic and is
*'(xt, t8) proportional to sin '. So for very large masses, the

+ i accuracy of the model is reduced to third-order in
=- 2 V(x2 , to) + ( to) + V(x-l, to) space. Note that (23) is is valid effectively field theory

1- i at the macroscopic scale when the system is very
4- [V(x,+2, to) + V(x-2, to)]. (20) close to local equilibrium where q'o(x, t) = V' (x, t)

Note that (20) is the simplified form of the finite- 2tx,t) forallx.
difference equation at the macroscopic scale when the
system is very close to local equilibrium throughout 2.6. Numerical confirmations

To numerically test that the quantum algorithm (12)
4 Note that the result (20) is accurate up to fourth order in Sx is indeed equivalent to the finite-difference equa-

only in the situation where the initial system is in local equilibrium
defined by (oo((x1, tn) = 49l (X1, tn). In the more general situation tion (20) and to see just how good of an approxima-
when the system is not in local equilibrium where Vo(xt, tn) j tion of the single-particle Schrbdinger equation it is,
(pl (xl, tn), the result (20) is accurate only up to third order in Ax. we have performed two simulations.
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In the first simulation, we test the numerical time
evolution of a Gaussian packet ýlexact(X, t) = ao ± an COS (2n7r e-it

S0e_2 (2,2 ), (24) (28)
a1(x,0)-- r1/27r 1 /4  

Note that in (28), time is scaled by a factor t, to
where f > x > L for a lattice of size L = 64f and account for kinetic corrections to the time step. As
where the packet width is a = L/I0 as shown in the number of lattice nodes becomes large, this scaling
Fig. 1. factor approaches one.

The exact analytical solution of(21) is obtained by The second test of the quantum lattice-gas algo-
computing the Fourier components of the energy basis rithm as a model of the Schr6dinger wave equation is
functions the measurement of its numerical convergence. Mul-

L/2 tiple simulations (10 in total) were carried out forIf
ao = - I (x, 0) dx, (25) lattice sizes ranging from L = 8f, 16e, 32e ... up to

L j L = 8192f. In each case the initial state of the simu-
-L/2 lation was the ground state (a sinusoidal energy eigen-

L/2 state)

an = L (x, 0)cos 2n7r dx. (26) (X, exat(x) cos(2rx/L)29)

-L/2 VTI2

With h = 1 and m = 1, the energy eigenvalues are Each simulation was run for one time step T = r and

2n 27r28x 2  the numerical error, denoted c, from the exact solution
En = L 26t , (27) was then measured using the following formula

and the time-dependent solution to (21) plotted in L
Fig. 1 is E(L) = L {lI(x, T)12 - I*exact(X)I122. (30)

0.1

St=0 We define the grid resolution as the inverse of the total
') 0.08 number of lattice points. That is, for a box of size 1,

the resolving cell size is defined as Sx - " A plot
0.0 "of the error versus the resolution is given in Fig. 2.

-1- 0.0As the resolution is increased, the error drops off as
"~ 0.04 0=0c- "(L) - L 5 4 5 .

•o0.02t15
.0

P4, t=200 , 01

10 20 30 40 50 60 • 0.00001
Position 1. 10-'

Fig. 1. Time evolution of a Gaussian packet for a single quantum 10-

particle overplotted in succession where the x-axis is the position o
on a 64-node lattice in units of the lattice spacing t and the y-axis 0.00050.001 0.005 0.01 0.0• 0.

is the probability density kP(x, t)I2 . The solid curves are the exact Delt.

analytical solution and the circles are the data from the quantum
lattice-gas simulation (the initial wave function was normalized, Fig. 2. Log-log plot of the numerical error versus resolving grid
therefore the area under each curve is one). The lattice size is cell size, 8x, indicating the convergence property of the quantum
L = 64f. The initial Gaussian packet of with 7 = L/I0 at t = 0 lattice-gas algorithm (12) and (13) for the Schrrdinger equation.
is centered at x = 32e and the dispersion is evident by observing The data (black circles) are taken from numerical simulations with
the wave function at the subsequent times t = 50r, 100r, 150r, grid sizes from L = 8t up to 8192e after a single time step 7' = r.
and 200r. Periodic boundary conditions were used and nmax = 20 The solid curves are best-fit linear regression with a slope of 3.48
energy eigenmodes were used to generate the exact solutions. A time and 5.45 for the models defined by (12) and (13), respectively,
scale factor ts = 1.04 was used to improve the agreement between These results demonstrate third-order and fourth-order convergence
the numerical and analytical solutions, in space for the two models, respectively.



288 J Yepez, B. Boghosian / Computer Physics Communications 146 (2002) 280-294

3. Adding an external scalar potential In the continuum limit, this finite-difference equation
represents the Schrbdinger wave equation with an

It is possible to model an external potential by ap- external potential term
plying a local phase change to the system wave func- BO(x, t) + O(&2)
tion [13,14] at

V/ (x, t) --+ e-iV(x)St * (x, t). (31) i Sx2 a 2 '(x,t t) 4

The effect of this phase change is to alter the finite 2 S -2 1 iV (X)i1(X t) + OSX (36)difference equation (20) as follows (6
To confirm the validity of(36) we perform the follow-

V'(Xl, t8) - + e-iV(x/)St f (xI, to) ing numerical simulations that yield results that can be
2 checked against analytical predictions:

+ [e-iV(xI+±)3t (X1+l, to)
iV(X _j)8t (Xjto (1) Harmonic oscillation of a displaced Gaussian

+ e V/ to)] wave packet in a parabolic potential.
1- _iV(xI+2)St (X/+2, to) (2) Quantum tunneling through a potential barrier.

4

+ e-iV (X-2)31 V(X 1- 2 , to)]. (32) 3.1. Harmonic oscillator

If we expand the potential terms in the arguments of The first numerical test presented here is the simu-
the exponentials lation of the behavior of a wave packet in an external

+ dV(x) parabolic potential. This is the well-known problem
V(xl±j)3t = V(x 1 )&t + &Stx x + O(Sx 2 ) of the linear harmonic oscillator. Schr6dinger analyti-

(33) cally calculated the exact time-dependent solution for

(33) the evolution of a Gaussian packet that is displaced

we see that we can neglect the second term on the by a distance a from its central ground state in a par-
RHS because of diffusive ordering 8t&x -' 8x3 since abolic potential well of the form V(x) = ½ Kx 2 . The
we need to keep terms only to order 8x2. Therefore, in initial wave function is
the continuum limit (32) is well approximated by a1 /2  (x-a)2!2

V'(xi, t8) t(XO) = 7r (/2)e- (37)

+ i where a = (mK/fh2 )1 14 is the width of the packet

2 e iV) (x1 to) and Wc = (K/m) 112 is the angular frequency of the
eiV(xt)st [lr(Xi+i, t0) + l(Xl-,t/)] classical harmonic oscillator [21]. The exact time-

dependent solution for the probability density is the

- I 8ie_,Vx[(x,+2, to) + *(XI-2, to)]. following:
4 (34) 1 r(x, t)12  e _-e2(x-ac'swt)2 /2 (38)

Now multiplying through by eiv(xl)8t and expanding A derivation of the result (38) is also presented by
the LHS to order 8t 2 we have the following finite- Schiff [22].
difference equation: To test the quantum lattice gas algorithm against

(38) we used a periodic lattice with L = 256f nodes.
[1 + iV(xi)8t]V1(x1, t8) The initial Gaussian packet is displaced to the right

1 +i of the center of the grid by 32 lattice nodes and so
2 Vt(XIto) is initially located at xo = 160f as shown in Fig. 3.

+ Vr(Xi+j, to) + *'(X1- 1 , to) With h = 1 and m = 1, the classical time period is

I - i Tc = 27r/wtc = 1987r. So letting the simulation run
4 [if(xI+2, to) + *Xr(x,-2 , to)1. (35) for 1000 iterations allows the packet to the other side
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of the potential well near position x = 96e as demon- and the agreement between the analytical solution and
strated in Fig. 3. the numerical data is excellent.

The simulation was run for a total of 6000 time
steps and the location of the peak of the Gaussian wave 3.2. Scattering off a potential barrier
packet was recorded every 100r time steps. This data
is plotted in Fig. 4. The location of the peak oscillates The next numerical test of the quantum lattice gas is
in time as expected. Overplotted on this numerical data to simulate the well-known case of quantum tunneling
is the exact solution for the oscillation a cos wct + xo through a constant potential barrier of width a. That

is, V(x) = Vo for 0 (< x < a and V(x) = 0 otherwise.
t=1000 to¶ -0The initial wave function is a Gaussian packet with net

momentum to the right

li(X,0) -- _tl/_rl/_ (• ,i

S0)-1 ( • ) +(39)

__ where p is the momentum parameter. We choose the
60 80 100 120 140 160 180 200 mean kinetic energy of the packet to be equal to the

Position constant energy level of the potential barrier p2 =

Fig. 3. Time evolution of a Gaussian packet initially displaced by VO. In this case, the packet tunnels through the barrier
a = 32e lattice sites from the center of a parabolic potential well but the sum of the transmission and reflection proba-
with K = 10-5. The width of the packet is a = 14.4e. The time bilities are less than one because there is a resonance
development of the Gaussian packets over plotted in succession
where the x-axis is the position on a L = 256t node lattice and
the y-axis is the probability density I*(x,t)12 . The red curve is t=0 t=2600 t=4000

the parabolic potential. The h = I and m = 1, the time period of
the oscillation is Tc = = 1986.92•. A total of ten profiles are H
over plotted corresponding to time t = 0, 1OOT,200r,..... 1000r,
which is approximately half of the oscillation time period, so the
packet is seen to "swing" to the other side of the potential well while t-6000 t=8000 t-10000

maintaining a fixed shape as analytically predicted.

160
01500 t=12000 t=14000 t=20000

S140
U
0O 130

0)120 ~~
a110

100 Fig. 5. A sequence of snap shots of the time evolution of a
100 packet that is incident from the left on to a potential barrier

0 1000 2000 3000 4000 5000 6000 where the mean kinetic energy of the packet equals the energy
Time Step Iteration (T) of the barrier. The x-axis is the lattice position and the Y-axis is

the probability density. The iteration time step for each frame of
Fig. 4. A comparison between the analytical and numerical predic- the sequence is labeled in the upper left comers. The simulation
tions of the location of an oscillating Gaussian packet in a harmonic was run on a periodic grid of size L = 4000f, for a total of
parabolic potential well. The solid curve is the analytical prediction 20,000 time steps. The width of the incident packet was set to
and the black circles are the numerical data taken from the quan- a = 0.035L = 140e and the initial momentum parameter was set
tum lattice gas simulation presented in Fig. 3. In the simulation, to p = 0.1 in units where t = I, r = I and m = I. The width of the
the packet is initially displaced 32 lattice units from the center of barrier was set to a = 0.064L = 256t. As expected the numerical
the grid at lattice node 128 for a periodic system with a total of simulation clearly demonstrates the resonance effect where there is
L = 256t nodes. The numerical predictions are in excellent agree- a non-zero probability of the particle to be trapped within the barrier
ment with the exact analytical solution, itself.
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effect where the particle is also trapped inside of the m(xt) = a + a n Cos(2nir
barrier. This effect is observed in the numerical simu- T- [ t ano L,2
lation shown in Fig. 5. n=1

± bn sin. 2n~r )e-~t~

4. Two fermionic particles (44)

which is basically the same as (28) except that weThe efficiency of the quantum algorithm (12) be- hdt d h i embcuewt w atce h
comes evident when it is used to simulate the dynam- had to add the sin term because with two particles the
icsofmeslevidequantu when rtislused To e csi e the dm-le wavefunction is not even, as is (24), for example. We
ics of multiple quantum particles. The case of multiple shall test the time evolution of two Gaussian packets.

tion operator e that we tested for the single particle The initial wave function in our test is the odd function

case. The particular sequence and number of quan- 1
tum gate operations remains fixed, independent of the 12exact(X'y't) -

number of particles to be simulated. The only differ-
ence is how the system wave function is initialized. - ýoct,• (Y' t)o 2 2 (x, t)],

In this section, for pedagogical reasons, we will (45)
consider the case of simulating two free quantum par-
ticles. The approach we use in this case can be directly where
generalized to the many-particle case. 1

To begin with we write the Schr6dinger wave crl(XO) /27 -i/4 (
equation for two free quantum particles The subscripts on the function ýpa., denote its de-

. -v(X, y, 0 pendence on the position and width of the individual
ih Gaussian packet. This functional dependence is actu-

h2 a2ý,(Xyt) h2 a2k(xyt) ally contained within the form of the coefficients ao,
- 2  t 2  2m t) (40) an, and b, that depend on the position and width of the
2m x2  2m y2 Gaussian packet in accordance with (41) through (43).

where x and y are the spatial coordinates of the Note that given the form of (45), Vfexact(X, X, t) = 0
first and second particle, respectively. Since the wave which satisfies the Pauli exclusion principle.
function is spatially separable as * (x, y, t) = p0(x, t).
ýp(y, t), the analytical solution to (40) is obtained in a 4.1. Numerical confirmation
similar fashion to the one-body case by computing the
Fourier components of the energy basis functions To numerically simulate the evolution of the two-

L/2 particle wave function governed by (40) using quan-
= f 0turn algorithm (12) we must use a new computational

a0 = •-J I (x, 0)dx, (41) formulation to implement our algorithm. The finite-
-L/2 difference equation implementation that we used in

L/2 Section 2.4, in the single-particle case, cannot be di-
S= 242) rectly applied in the two-particle case to each particleL L f L individually because it does not allow for the possibil-

-L/2 ity when the particles are quantum mechanically en-

L12 tangled. In general, this will be the case when there
( is an interaction between the particles. Therefore, web,, f p-g(x, 0) sin 2n~r x)dx. (43) i nitrcinbtenteprils hrfrw

L -/ shall use an implementation that can handle the most
-L/2 general situations involving correlated particles and

The energy eigenvalues are still given by (27) and the one that naturally scales to handle an arbitrarily large
time-dependent single-particle solution is number of particles in the system.



J Yepez, B. Boghosian / Computer Physics Communications 146 (2002) 280-294 291

We shall represent the basic quantum gate opera- 1 <, ae < Q and a + I •< p < Q. The number of basis
tions in terms of the fermionic creation and annihila- states in this case is the binomial coefficient (O). The
tion operators in the number representation, denoted system ket can then be expressed in the two-particle
bt and &a, respectively, and use this approach as the sector as
basis for a general computational formulation applica- Q Q
ble, in particular, to our algorithm and, in general, L') L > , •,12- -1 + 2i-1). (52)
to any quantum algorithm. Acting on a system of Q a=- fi=a+l
qubits, £4a and &ia create and destroy a particle occu-
pancy encoded in the anth qubit Since there are two qubits per site, we initialize thewave function using (45) as follows:

btlnl ... n,...nQ) = 0jn=1...1...nQ) n=0, a , exact(LaI Lj + I

(47) 2

6.1i ..n. .. Q)= nj ... O0... nQ) n, =l1, [ý_+-I] L + 1 ),(3
ctll..n .. n ) = 0 n,, = 0. 2- 2 ,0 ,(3

(48) where the notation [xJ means the floor of x and

The fermionic creation and annihilation operators where Q 2L. The floor operation is used so that

satisfy the anti-commutation relations the initial value of the wave function at each node is
divided evenly between each pair of on-site qubits.

{ fa 0,} = 8cy/•, This is on account of definition (4) that allowed us
P- to have interfering possibilities for a single particle

=, 0, (49) to occupy a single position on the lattice. Moreover
(at, b} 0. in the two particle case, still only a single particle

can occupy a single position because of the form of
The number operator _ -- at0a has eigenvalues of the wave function (45) which is consistent with the
1 or 0 in the number representation when acting on anti-commutator relations (49). However, particle one
a pure state, corresponding to the ath qubit being in can interfere on-site with itself or with particle two,
state 1 ) or 10), respectively, or vice versa since the particles are indistinguish-

The square-root-of-swap gate (5) acting on the on- able.
site qubits indexed by a and a + 1 can be expressed in At this point we have described how we implement
terms of the creation and annihilation operators as the two quantum gates used in our algorithm, how
Uaa+i = a*h,(1 - ta+1) - Acbaa+i - Aat a we enumerate the basis states, and how we initialize

a U the two-body wave function in this basis. The only
+ A*(1 - ia)ha+i + I - ha - fh-i-, remaining issue left to describe is how we project

(50) the two-coordinate wave function V(x, y, t) on to

where A = ½ + ½. Also, the swap operator (9) acting a single-coordinate wave function V' (x, t) that can
between the first qubits indexed by a• and / at be plotted on a single physical axis. Because of theneighboring nodes can be expressed in terms of the underlying lattice in our system, this is straightforward
creation and annihilation operators as to do by summing out one of the coordinates asfollows:

,=1 - bab - bfif - iai - ho. (51) L-I

The quantum gates (50) and (51) are used to imple- ýt(xl, t") * ifi(xI, Y", t"). (54)

ment the quantum lattice gas collision and streaming m=O

operations, respectively [23]. If V, (xi, ym, t,,) is normalized then so is Vr(xi, tn)
The basis state in the two-particle sector can be according to (54). A comparison of the time evolution

labeled with the binary encoding formula 12 a + of the analytical solution (45) and the numerical
2#i-1) where the integers a and /3 are in the ranges solution (54) for a lattice with 30 nodes is shown in
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0.2

>, 0.1 coarse of the simulation. However, a limitation does
t 0.08 exist on state preparation (i.e. initialize the quantum

computer's memory) and we have not argued here
Q 0.06 that it is possible to initialize the many-body wave
4 t=1 function in an efficient way. For that matter, have we

.0.04 also have not argued that it is possible to measure the
final state (reading the quantum computer's memory)

• 0.02 of the computed wave function in an efficient way.0
N4 Nevertheless, the quantum algorithm presented here,

5 10 15 20 25 30 which is a way of representing a discretized Feynman
Position path integral, has the useful feature that it is explicit in

time where the value of the wave function at location x
Fig. 6. Time evolution of two fermionic particles initialized as and time t + r depends only on the previous values of
Gaussian packets overplotted in succession where the x-axis is the the wave function at time t in the immediate vicinity
position on a 30-node lattice in units of the lattice spacing e and
the v-axis is the probability density IF(x1, x2, 012 projected onto of x. Since the algorithm is unitary and fourth order
the xI -axis. The solid curves are the exact analytical solution and accurate in space, it is useful even for implementation
the circles are the data from the quantum lattice-gas simulation (the on a classical computer.
initial wave function was normalized, therefore the area under each We have carried out a variety of numerical tests
curve is one). The initial Gaussian packets of width a = 3f at t = 0 proving that the quantum algorithm indeed allows us
of the first and second particle is centered at x = 1Of and x = 20e,
respectively. The dispersion of both packets is evident by observing to faithfully reproduce the correct dynamical behav-
the wave function at the subsequent times t = 7T, 21r, 28r, 35r ior of a continuous and differentiable wave function
and 42r. Periodic boundary conditions were used and nmax = 40 in the presence of an external potential. However, the
energy eigenmodes were used to generate the exact solutions at four total probability for finding the quantum particle in
times the resolution of the numerical solution. No time scale factor the system is not exactly conserved in this quantum
was used and there is good agreement between the analytical and
numerical predictions at all later times of the numerical simulation lattice gas model. One must approach the continuum
as demonstated by the graphs. limit to achieve a high degree of probability conser-

vation. Since we have demonstrated that the quantum
Fig. 6. Even with this small lattice, throughout the time lattice gas model is fourth-order convergent in space,
evolution of the model run the numerical predictions it is always possible to choose a grid resolution that
are in good agreement with the predictions of the exact achieves the necessary fixed numerical accuracy re-
solution. quired by any application.

We have also described and carried out the numer-
ical simulation of two fermionic particles, which are

5. Conclusion non-interacting except for a quantum mechanical ex-
change force arising from the anti-commutation re-

We have presented a quantum algorithm that is lations. The numerical formalism used to implement
an efficient and accurate scheme for simulating the the quantum lattice gas algorithm represents the ba-
time-dependent evolution of a system of quantum sic quantum gates in terms of quadratic products of
particles governed by the non-relativistic Schr6dinger creation and annihilation operators in a second quan-
wave equation. The scheme uses a quantum lattice tized representation. This formalism straightforwardly
gas system of particles colliding and hopping on a handles an arbitrarily large number of particles. The
lattice. The algorithm is efficient in the sense that the simulation is carried out in the many-body sector (i.e.
computational effort needed to simulate an arbitrarily a Fock space where the number of particles is fixed)
large number of particles (within the constraint of where all the basis states are enumerated by a simple
the grid resolution) exactly equals the computational binary encoding formula. In general, the wave func-
work needed to simulate a single particle, given that tion is initialized using a Slater determinant so that
the algorithm is executed on a quantum computer the Pauli exclusion principle is satisfied and the wave
that remains phase-coherent throughout the entire function is odd. In all the test cases (single free par-
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ticle, single particle in an external potential, and two Appendix A
free fermions) the numerical predictions agreed ex-
tremely well the analytical predictions and exact so- The full finite-difference equation for the quan-
lutions. tum lattice-gas model presented in this paper is quite

It is important to realize that it is possible to push long. To simplify this expression, we introduce a lo-
the quantum lattice gas model into regimes where the cal neighborhood vector with the following 18 com-
numerically predicted results are absolutely wrong. ponents
This occurs when the local configurations are far from
local equilibrium. Remember that local equilibrium 4(xI, t)
exists on a lattice node when the qubits at that node = ((Po(xl, t), (o (xI, t),

have identical phase. Therefore, large gradients in the
macroscopic profile of the modeled wave function (o(xI+I, t, (Pl (Xl+1, t), oo(x/-I, t0, o (x-1, 0,

may cause a large phase difference between the on-site 900(x/+2, t), 0 (xI+2, t), (oo(xl-2, t), ý01 (x1-2, t),
qubits eventually resulting in anomalous large-scale
behavior in the model. A good example of this occurs ý0o(xl+3, t), ýO1 (XI+3, t), 'oo(x1-3, t), q'1 (x1-3, t),

when the momentum of a moving wave packet is too WO(XI+4 t, t,1 (XI+4, t), (PO(Xl-4, t), V1 (XI-4, )).
high. In this case, since the real and imaginary parts
of the wave function are sinusoidal, if the momentum (A. 1)

is so high that the wavelength of the traveling wave We define the following two coefficient vectors
is on the order of the lattice cell size (X = h/p "••),

then after a few times step iterations of the algorithm, & (-3, -3i, 3, i, -3, -5i, 1, i, 3, 3i,
large phase differences in the on-site qubits occur. - 1, i, 1, 3i, 0, 0,- 1, -i),
In this case, the local on-site configuration will not (A.2)
relax toward the correct local equilibrium. Fortunately, / (-3i, -3, -5i, -3, i, 3, 3i, 3, i, 1, 3i,
the norm of the modeled wave function will deviate i, i, -1,-i, -1,0, 0).
from unity in these types of cases. Therefore, it is
straightforward to test if the model predictions are The microscopic evolution equation (13), explicitly
non-physical by periodically checking the norm of the written out, has the following protocol of operations

wave function.
Interaction potentials between particles can also be 1/(tl6)) =- (S2CS 2CS CS 2 C)

modeled using this quantum lattice gas method [14]. X (T-1 cTc1c (t)). (.3)
We still need to perform simulations of a many-body

system with an interaction potential. Also, numerical The corresponding full finite-difference equation can
tests in two and three dimensions should be conducted. be specified by the following dot product of these
In this case, it would be straightforward to test the ad- vectors
dition of an external vector potential using the results •(x, to)
analytically predicted by Polley [18]. The simulation Poo(xl, t1 6) - 16 (A.4)
of the dynamical behavior of the positronium atom
would be a reasonable next step for the application of (PI (Xl, t1 6 ) "(Xl, to) (A.5)
the quantum lattice gas method to quantum mechani- 16

cal computational physics. Note that if to is the initial time, then the interval
T _= t1 6 is defined the update time step. The finite-
difference equation for *r = 4po + V1 is

Acknowledgements (1 6 + f). ý(xl, to)
•f(Xj, t16 ) = L i .i( 1 o (A.6)

J. Yepez would like to thank George and Linda 16
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lattice-gas model and helpful discussions. indicated in Fig. 2.
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Abstract

I review the differences between classical and quantum systems, emphasizing the connection between no-hidden variable
theorems and superior computational power of quantum computers. Using quantum lattice gas automata as examples, I describe
possibilities for efficient simulation of quantum and classical systems with a quantum computer. I conclude with a list of research
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1. Introduction ficiently on a quantum computer [2]. More recently,
Deutsch [3], Jozsa [4], Simon [5], Shor [6], Grover [7]

There are two paths towards quantum computing: and others have noted that a quantum computer could
one is teleological and the other is practical. The tele- solve classical problems as well. In this primarily ped-
ological path--described 35 years ago in the proph- agogical paper I describe some of the steps which
esy known as Moore's Law [IJ]-leads down through have been taken along this practical path, and spec-
smaller and smaller device sizes where quantum ef- ulate about some steps further along it.
fects become wilder and wilder. Eventually, rather
than domesticating them for classical computation, ex-

perimental physicists and engineers believe they will
be able to preserve them for quantum computation. Let me begin by reviewing the reasons quantum
The practical path, on the other hand, is paved with systems are believed to be hard to simulate on clas-
the desire to solve specific problems efficiently. In an sical computers. Traditionally these are known as 'no
amusing role-reversal, it is theoretical physicists, com- hidden variable theorems'. Each is a statement that
puter scientists, and mathematicians who follow this no classical model with specified constraints can re-
path. The first steps along it were taken 20 years ago produce quantum mechanical results. Consideration
by Feynman, who suggested that since quantum sys- of two of them, the Gleason/Kochen-Specker theo-
tems seem to be very hard to simulate on a classical rem [8,9] and Bell's theorem [10], reveals both their
computer, perhaps they could be simulated more ef- heuristic power and their weaknesses.

In 1957 Gleason proved that for Hilbert spaces of
E-mail address: dmeyer@chonji.ucsd.edu (D.A. Meyer). dimension at least 3, any non-negative measure on

0010-4655/02/S - see front matter © 2002 Published by Elsevier Science By.
PII: S0010-4655(02)00420-4
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states which is quantum mechanical (i.e. for any or- The states for which Bell's theorem rules out classi-
thogonal basis {•i } the measure sums to 1) must de- cal hidden variables are entangled, i.e. ones for which
rive from a density matrix [8]. In 1967 Kochen and the state of multiple particles cannot be described as
Specker made the contradiction with a classical hidden the product of states for each particle individually.
variable model more explicit [9]: They constructed a Since this is true for all but a set of measure 0 in the
finite set of unit vectors in 1R3 with the property that space of all pure states, Bell's theorem and its gener-
every attempt to assign values 0 or I to each vec- alizations (see [15] for a recent survey) indicate that
tor satisfying the condition that in each orthogonal most quantum states cannot even be described by rea-
triple two vectors get 1 and the third gets 0 must fail. sonable (in the sense of local) classical models. This
That is, no classical 'hidden variable' can be assigned is a more subtle problem than simply the large size of
to pre-determine which outcome of each of some fi- the state space, which we consider next.
nite set of complete measurements of the spin-squared
of a spin-I particle will be observed (since the spin
eigenvalues are {- 1,0, + 11, two of the spin-squareds 3. Dynamics
are 1 and one is 0 for any complete measurement).
Such a hidden variable would be non-contextual, in The dimension of the Hilbert space describing the
the sense that its value on each vector would specify state of a system of multiple particles grows exponen-the spin-squared observed for that measurement, inde- tially in the number of particles: 2n~ for n spin-½ par-
pendently of which complete measurement including ticles, for example. This exponential explosion, how-pendntl ofwhih cmplte masuemet icluing ever, is not enough to preclude classical simulation.it is performed. One can argue, however, that noncon- evrisntnogtopcldcasclsmuto.teaity is torforme. sict argue, condito tolace onhiden Consider a classical, probabilistic lattice gas. On a ho-te x tu a lity is to o s tri c t a c o n d itio n to p la c e o n h id d e nm o e o u o n - i n s n a l t i c o f i z n th r a e
variables-perhaps the results of measurement should mogeneous one-dimensional lattice of size n there are4n~ basis states si, since each lattice site can be occu-
depend on hidden variables inherent in the measur- pied by no more than 1 particle with each of the two
ing device, which might differ for each complete mea- possible velocities. A general state s is a convex com-
surement [11]. Furthermore, the measurements must bination:
be exactly along the vectors Kochen and Specker con-
structed, but from a computational complexity per- s 4w -i

spective, infinite precision is suspect [121-and in fact s = pisi with • Pi = 1, Pi >0.
one can show that without additional assumptions one i=0 i=0
cannot prove a Kochen-Specker theorem using only Evolving the whole state, i.e. the probability distrib-
finite precision measurements [ 13]. ution, is therefore an exponentially difficult problem

Both of these weaknesses are absent from Bell's in the size of the lattice. Nevertheless, such lattice
theorem [10]. He proved that the results of local gas models are used regularly (see, e.g., [16]). But
measurements on specific states of pairs of spin-! one does not evolve the whole probability distribution.
particles, i.e. vectors inC 2 ®C2 , cannot be reproduced Rather, one samples it, by evolving a single si to a sin-by any local, classical hidden variable model. Here gle s' at the next timestep, using some random num-bynylocal' meansrestrictd thiendivariduable pile. THis ber generator. Multiple runs sample the final distribu-'lo cal' m ean s restricted to in d iv idu al p articles. T h is t o .A q a t m l ti e g s a t m t n( L A h ction. A quantum lattice gas automaton (QLGA, which
result is robust against measurement imprecision, and I will describe in more detail in §4) is also described at
locality of the hidden variables seems justified on each timestep by a vector in a space with basis [ Is) )-
physical grounds-the finite speed of light and the where I.) is the standard Dirac notation for vectors in
locality of physical interactions. In fact, these are the Here spthe s D o r r
same grounds upon which we base our models of
computation: At each timestep a classical or quantum 4n_1 4n- 1
Turing machine changes only the state of the head and *t)= >ailsi) with 1 Jai 2 =l1 ai E C.
the symbol written on the tape cell where the head is i=0 i=0
located [3,14]; it does not make non-local changes of Evolving the QLGA state has classical computational
all the cells of the tape simultaneously, for example. complexity comparable to evolving the whole state of
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the probabilistic LGA. But in the quantum case, this 4. Quantum simulations
cannot be reduced by sampling individual histories:
each has a complex amplitude so the histories with In §§1-3 I have tried to explain the heuristic that
each given final state interfere, classical simulation of quantum systems is difficult,

Thus interference seems to be the phenomenon while noting what remains to be proved to make
which makes quantum dynamics hard to simulate clas- such a claim rigorous. Now let us consider Feynman's
sically. In fact, although the multi-particle structure of proposed solution: simulation with quantum comput-
a system is important, entanglement per se seems to ers [2]. The standard model of quantum computa-

be less relevant: In liquid state NMR quantum com- tion allows polynomially many local (i.e. acting non-

puting experiments [18], for example, the state is not trivially on only 1 or 2 qubits) gate operations [25].

entangled at any timestep (more precisely, since the This is a reasonable model since in principle it can

system is in a mixed state-a convex combination of be realized by a quantum system with a local Hamil-

pure states-the state is separable) [19]. Nevertheless, tonian. Feynman's proposal has been verified in this

it seems to be difficult to construct a reasonable lo- model for quantum systems defined by local Hamil-

cal hidden variable model for the dynamics [20], i.e. tonians [26-31]. More exotic quantum systems can

the dynamics seems difficult to simulate classically, also be simulated efficiently with a standard quantum

To make this more than heuristic, however, we would computer: Fractional quantum Hall systems, for ex-

need a dynamical Gleason/Kochen-Specker/Bell-type ample, have Hamiltonians which vanish on the phys-

theorem which applies even for evolution through a se- ical states; the only nontrivial unitary transformations

quence of unentangled states. Perhaps some hint about have global (topological) origin. Nevertheless, Freed-

a way to do this may be found in Laflamme's response man, Kitaev and Wang have shown that such topologi-
to the separability criticism of NMR quantum compu- cal quantum field theories can be simulated efficiently
tio with a standard quantum computer [32].

Of course, some demonstrations of the absence of A particularly simple architecture for a quantum
computer is a QLGA [33]. Although I'm not aware

classical models for quantum dynamics already exist. of a demonstration that classical LGA are capable of
These are more commonly known as quantum algo- universal computation, their similarity to the reversible

rithms for oracle problems; since each consists of a biirdal m odel of margou [ u th at

sequence of unitary operations, they are dynamical re- theyia y b e; sine o A pa liz to det stic

sults. Grover's quantum search algorithm, for exam- te a e ic LAseilz odtnnnsi
sules.rolvers quantuoblem sfidearchying alg m, fr e - LGA, they would be also. Whether they can efficiently
pie, solves the problem of identifying a eX (0, 1 }y given (i.e. with polynomial overhead) simulate quantum gatc
an oracle which responds to a query x E (0, 1 }n~ by re- arrays is, I believe, also an open question. In the other
turning 3,o using only O(/-1) queries [7]. Classi- direction, QLGA can be simulated efficiently on a
cally, any algorithm would require 0 (2 ') queries. For standard quantum computer, but have theoretical and
n > 2, the state is entangled at every timestep after possibly practical advantages: They directly simulate
the first [22]. Possibly more to the point is Bernstein quantum systems and are possibly more easily realized
and Vazirani's algorithm which solves the problem of experimentally than arbitrary quantum gate arrays.
identifying a E {0, 1 }n given an oracle which responds The possible configurations for each particle on
to a query x E (0, 1)' by returning x • a mod 2, us- a one-dimensional lattice L are labeled by pairs
ing only 1 quantum query [23]. Classically, any al- (x, a) E L x {±l}, where x is the position and ce
gorithm would require O(n) queries. And this quan- the velocity. A classical lattice gas evolution rule
tum algorithm works without creating entanglement at consists of an advection stage (x, a) ý-+ (x + at, at),
any timestep [24]. These results suggest that while a followed by a scattering stage. Each particle in a
theorem on the impossibility of efficient classical sim- QLGA [33] exists in states which are superpositions
ulation of quantum dynamics may exist, it will have of the classical states: IJV) = ZVx.,aIx, ct), where
to count all the elementary operations, not just the 1 = (*'I*V) = F V'xVx. The evolution rule must be
queries, which will presumably make it more difficult unitary; the most general with the same form as the
to prove, classical rule is:
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>z . I a X +x,. I ax + ce, ae) 5. Simulating classical systems

scatter -scatt *x,.S•, IX + a, c'), In the previous sections we have seen that there are

where the scattering matrix is quantum algorithms to efficiently simulate multipar-
ticle quantum systems which seem to be difficult to

S( cosm isinm) simulate classically. Since, as I noted in the Introduc-
\isinm cos m tion, there are efficient quantum algorithms to solve

Fig. I illustrates this quantum evolution: at m = 0 classical problems, a natural question is whether quan-
it specializes to the classical deterministic lattice gas tum computers can simulate classical systems [41,42].
rule. The Ax = At -+ 0 limit of this discrete time Assuming quantum mechanics is a correct description
evolution is the Dirac equation [33]; the Ax 2 = At -- of the world, the existence of a classical description
0 limit is the Schr6dinger equation [35]. for macroscopic physics means that quantum corn-

This QLGA model can be extended to include puters can simulate classical physics with constant
multiple particles with a unitary two particle scattering overhead-although the constant factor may be some-
rule thing like 1023, i.e. a number of quantum degrees of

freedom sufficiently large that subsystems decohere
Ix, a, x, -a) .-+ e' Ix, a, x, -a) and can be identified as the classical objects to be sim-

shown in Fig. 1. With these rules the 1-dimensional ulated.
QLGA discretizes the quantum field theory described Can we do better? That is, could there be quantum
by the (I + 1)-dimensional massive Thirring model speedups for classical physics? Yepez has proposed
[33,36]. These rules also preserve the symmetry (i.e. that the answer is 'yes'. Using a "Type II" quantum
bosonic or fermionic) of the wave function under par- computer in which the state is measured, locally, af-
ticle exchange [37]. The QLGA rules can be general- ter each timestep and then reset using a lattice Boltz-
izcd to discretize the multi-particle Schr6dinger equa- mann rule [43]. A model like this can achieve at most a
tion in arbitrary dimensions [35]; it seems more diffi- constant speedup, corresponding to reduced computa-
cult, however, to create QLGA which discretize rela- tional cost for local evolution. In practice, of course, a
tivistic evolution in higher dimensions [38]. large constant improvement can be tremendously use-

The fact that the QLGA rules are homogeneous, ful, but perhaps it is possible to do better. More pre-
i.e. the same at each lattice site and at each timestep, cisely, using a standard quantum computer, can classi-
suggests that they might be easier to implement than cal systems be simulated more efficiently than is pos-
general quantum gate arrays which are not. Possi- sible classically? Lidar and Biham have shown that
ble physical systems in which they might be imple- the answer to this question is also 'yes', for the non-
mented include crystals-as originally proposed by dynamical problem of sampling the ground state dis-
Feynman [2] and more recently in the context of solid tribution of a spin glass [41 ].
state NMR [39]---or optical lattices [40]. A detailed There are also QLGA results which suggest that
proposal for physical implementation in such systems certain aspects of classical dynamics can be simulated
could motivate experimental work towards realization more efficiently quantum mechanically. Consider clas-
of QLGA. sical diffusion of a particle in a linear potential, as

shown in Fig. 2. A discrete model for the evolution
Cos m is a biased random walk, with prob(Ax) (x e-VV x.

* * The results of simulating the evolution with a classical
(probabilistic) LGA are shown in Fig. 3. The average

i sin m * -- position of the particle satisfies

(X(O) - (x(O)) (X -V Vt.
exp is In QLGA the evolution rules can be modified to

include a potential by incorporating an x dependent
Fig. I. The general evolution rules for the one-dimensional QLGA. phase multiplication, i.e. e-iV(x) at each timestep [44],
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Fig. 2. The probability distribution for the position of a classical Fig. 4. The evolution of expected position for the QLGA model of a
particle after diffusing in a linear potential. The particle was initially quantum particle subject to a linear potential.

lation of more complicated classical dynamics may be

100 possible.

80
6. Conclusion

6006
In conclusion, let me reiterate the open questions

40 discussed in this paper:

0 Is there a proof that (some) quantum dynamics is
difficult to simulate classically'? Can it be difficult

-2 -1 1 2 <>even when the state is unentangled (separable) at

Fig. 3. The evolution of expected position for the random walk each timestep?

model of a classical particle diffusing in a linear potential. In case QLGA become a practical architecture for

quantum computers, can they simulate the standard

which one might imagine implementing in a physical model of quantum computation with no more than

system with an applied, spatially varying magnetic polynomial overhead?

field, for example. Fig. 4 shows the result of a QLGA What are possible physical implementations of
simulation with a linear potential. Now the average QLGA?
position of the particle approximately satisfies

(x(t)) _ (x -V Vt 2 . What are the correct QLGA models for relativistic

That is, this quantum system simulates the evolution quantum systems in more than 1 spatial dimension'?

of the average position of a classical particle diffus- and most importantly,
ing in a linear potential quadratically faster than does
the classical simulation shown in Fig. 3. I must em- Are there quantum algorithms which speed up the
phasize that it is only the average position which is simulation of classical physics?
being simulated accurately, not the whole probabil-
ity distribution. Furthermore, the quadratic speedup Positive answers to this last question will broaden the
only holds on timescales t << 27r/VV. On longer possible uses for a quantum computer and help justify
timescales the evolution is periodic [45]. Nevertheless, the immense commitment of resources which seems
this very simple example suggests that efficient simu- likely to be necessary to develop a scalable one.
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Abstract

The real-time probabilistic simulation of quantum systems in classical computers is known to be limited by the so-called
dynamical sign problem, a problem leading to exponential complexity. In 1981 Richard Feynman raised some provocative
questions in connection to the "exact imitation" of such systems using a special device named a "quantum computer". Feynman
hesitated about the possibility of imitating fermion systems using such a device. Here we address some of his concerns and, in
particular, investigate the simulation of fermionic systems. We show how quantum computers avoid the sign problem in some
cases by reducing the complexity from exponential to polynomial. Our demonstration is based upon the use of isomorphisms
of algebras. We present specific quantum algorithms that illustrate the main points of our algebraic approach. © 2002 Published
by Elsevier Science B.V.

1. Introduction bosons) on a classical computer is the exponentially
large basis set needed (i.e. the dimension of its Hilbert

Because of recent exciting algorithms, like the fac- space grows exponentially with the number of de-
toring algorithm of Shor [1] and the search algorithm grees of freedom). Exact diagonalization approaches
of Grover [2], that solve difficult problems on a quan- (e.g., the Lanczos method) suffer from this exponen-
tum computer using algorithms that would be im- tial "catastrophe". Viewed the other way around, this
practical on a classical computer, it is easy to over- basis set scaling is what restricts today's classical com-
look that the original proposals for quantum comput- puter to simulating only small quantum computers.
ers were for the purpose of solving quantum physics This point seems indisputable, but should not be taken
problems [3]. People like Feynman [3] focused on the as proof that quantum systems cannot be simulated
extent to which such a computer could imitate a spe- on a classical computer. By the same token, the re-
cific physical process, suggesting in part that quantum cent claims [4] that quantum computers can simulate
problems were inherently too complex for a classical all quantum systems efficiently lacks explicit and de-
computer [3]. tailed algorithms for specific problems, and lacks a

The obvious difficulty with deterministically solv- generic model of quantum computation including the
ing a quantum many-body problem (of fermions or unitary maps (quantum gates) that can be physically

* Work at Los Alamos is sponsored by the US DOE under implementable. Even if a quantum computer existed,

contract W-7405-ENG-36. some interesting quantum problems, such as finding
Corresponding author, the ground state of a general quantum Hamiltonian,
E-mail address: ortiz@viking.lanl.gov (G. Ortiz). do not yet have efficient quantum algorithms. Finding
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such a quantity for small systems is relatively routine servable with a given error. Interestingly, Feynman's
on a classical computer. negativism about quantum systems being probabilis-

Feynman in fact analyzed two alternatives for sim- tically simulated by classical computers was a claim
ulating physics with computers [3]. One uses a proba- that negative probabilities were unavoidable because
bilistic classical computer that would produce from the of the "hidden variable" problem and the possible vi-
same input as given to a physical system the same dis- olation of Bell inequalities. The extent to which the
tribution of outputs as observed for the physical sys- sign problem is a hidden variable problem is unclear.
tem. The other uses a computer constructed of dis- On the other hand, QMC methods do not faithfully ad-
tinctively quantum mechanical elements that obey the here to Feynman's idea of a probabilistic computer.
laws of quantum mechanics. This latter proposal is the Two important differences are that most QMC simula-

quantum computer. tions are non-local and performed in imaginary time.

To the question, "Can quantum systems be proba- Feynman discussed real-time simulations on a local

bilistically simulated by a classical computer?", Feyn- computer. Implications of these differences have been

man's answer was unequivocally "No". 1 This answer noted by Ceperley [7] who suggests Feynman really

is surprising for even at that time some quantum sys- argues just against simulating quantum dynamics on a

tems were being very successfully simulated proba- local classical computer. In any case, the known prob-

bilistically on classical computers, mainly by quan- abilistic simulations on a classical computer clearly

tum Monte Carlo (QMC) methods [5]. To the question, do not qualify as a universally efficient computational

"Can quantum systems be simulated with a quantum scheme for general quantum many-body problems.

computer?", his answer was a qualified "Yes". He be- The limiting factors, for whatever reasons, are nega-

lieved almost certainly that this could be done for a tive or complex-valued probabilities whether the sim-

system of bosons but was unsure that it could be done ulations are done in real or imaginary time.

for a system of fermions. In this paper we present a de- To place the sign problem in a better perspective,

sign for a universal quantum computer that will sim- we will start with a real-time analysis of a collection

ulate a system of fermions. Before doing so, we first of interacting quantum particles. Quantum mechanics

discuss some problems that can be solved by a proba- tells us that these particles either obey Bosonic sta-

bilistic simulation of a quantum system on a classical tistics, whereby the wave function is symmetric with

computer and others that cannot. respect to the exchange of the states of any two par-

Probabilistic simulations of quantum systems on ticles, or obey Fermionic statistics, whereby the wave

a classical computer are mainly performed with the function is antisymmetric (changes sign) with respect
use of the Monte Carlo method. These statistical ap- to the exchange of any two particles [8]. Examples of
proaches were introduced to overcome the difficulty bosons are photons and gluons; examples of fermi-
of exponentially growing phase spaces by numerically ons are electrons, protons, neutrons, and quarks. Of-
oexpouatingthentiallymgr ing phasenpacsy-umersicnal n ten these two quantum statistics conveniently and ef-
evaluating the accompanying many-dimensional inte- ficiently map onto a third, quantum spin statistics [9].
grals by sampling from a function assumed to be non- Still in other cases, when particle exchange is unlikely,

negative. On a classical computer one can probabilis- particle statistics is simply ignored.

tically simulate a quantum system like liquid He4 [6] For a given initial quantum state Iit, (0)i , a quan-

and produce results that accurately compare with ex- t or solve s the time-epnent (0),adun-

periment. The situation, however, is far from satis-

factory. An unsatisfactory state of affairs results from equation

the frequent breakdown of the non-negativity assump- ih = I'I
tion and is called "the sign problem". The sign prob- at

lem is manifested by the seemingly exponentially hard by incrementally propagating the initial state via
task of estimating the expectation value of an ob- tP (t)) = e-lAtH/h-., e-iAtH/h tp (0)). (2)

M factors

There is as yet no mathematical proof that this is the correct (t = MAt and the Hamiltonian H is assumed time
answer. independent.) It should be reasonably apparent that if
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the Monte Carlo method is applied to the evaluation In this paper, we will focus on the dynamical sign
of the right-hand side of this equation, it is faced problem for a system of fermions, seemingly the most
with sampling from oscillatory integrands that are not challenging case. Eventually we will give a detailed
always positive and have unknown nodal surfaces, implementation of a simulation of the dynamical prop-
Further, as time t increases, the integrand fluctuates erties of a collection of interacting fermions on a quan-
with increasing rapidity. While clever stationary-phase tum computer. The implementation avoids the sign
forms of the QMC method have been developed, problem. First, in Section 2 we will discuss more fully
acceptable solutions are possible only for relatively the mathematical origin of the dynamical sign problem
short times. This form of the sign problem is called the in classical computation and show why a quantum al-
dynamical sign problem, and we are unaware of any gorithm overcomes the problem. In Section 3 we will
efficient [10] real-time QMC simulations for bosonic, give the elements required for Deutsch's quantum net-
fermionic, or quantum spin systems. work model of a quantum computer [ 14]. The quantum

Years ago [5], before quantum computers were pro- gate in this model conveniently allows the propagation
posed, it was realized that by transforming of systems of local two state objects, e.g., a localized
Schr6dinger's equation to imaginary-time r via t - quantum spin-½ particle called qubit. We also propose
-ihr the problem with the rapid fluctuations was a universal set of quantum gates (unitary operators)
eliminated. With this transformation, called Wick's ro- that allows generic propagation of systems of fermi-
tation, one solves the diffusion-like equation ons (the fabled "Grassmann chip" [ 15]). The resulting
a0•P) fermion algebra has been the main technical tool for

- HItI) (3) studying the classical Ising model in two spatial di-

by incrementally propagating the initial state via mensions [ 16], a prototype lattice model that had an

A,(H =ArH enormous impact on our understanding of phase tran-
IP•)~ ... e (0)). (4) sitions. Next, in Section 4, we show how this propaga-

M factors tion can be effected by the quantum spin gate. We will
(r = MAr and the Hamiltonian H is assumed time in- demonstrate the polynomial scaling of the construc-
dependent.) This transformation permits QMC simula- tion of the initial state, its subsequent time propaga-
tions of time-reversal invariant interacting boson sys- tion, and the measurement of some observable. Here
tems to a high degree of accuracy. For systems of in- we will also demonstrate the control of the error in the
teracting quantum spins and fermions (or bosons with results. In Section 5, we apply our model of dynami-
complex Hermitian Hamiltonians [11]), the transfor- cal fermion computation to a toy problem to illustrate
mation does not solve the sign problem. For quan- our procedures in more detail. Finally, in Section 6,
tum spin systems, the difficulty is finding a basis in we summarize and make some remarks about future
which all matrix elements of the positive-definite op- research directions.
erator exp(-ArH) are positive. Most notably this Our universal fermion gate and its mapping to the
difficulty occurs for frustrated quantum spins. For standard universal quantum gate is similar to the one
fermion systems, the problem is the Monte Carlo recently discussed by Bravyi and Kitaev [17] who
process causing state exchanges that because of the actually propose that a quantum computer built from
anti-symmetrization requirement just happen to pro- fermions might be more efficient than one built from
duce samples which are as frequently positive as neg- distinguishable two state systems.
ative. For the sign problem found in both types of
systems, the statistical error of the measured observ-
ables grows exponentially fast with increasing system 2. Dynamical sign problem
size. Another difficulty with the imaginary-time ap-
proach is analytically continuing the results back to In order to understand the mathematical origin of
real-time if real-time, i.e. truly dynamical, information the dynamical sign problem we use the Feynman path
is needed [12]. This continuation is an ill-posed prob- integral formulation [18] for continuum systems in
lem whose solution places extraordinary demands on the first quantization representation. In this formalism
the simulation [13]. one maps a quantum problem in D dimensions into
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a classical one in D + I dimensions and then simu- CAB } A(1ZM+l)B(71Z)eiC•""({•i

lates that problem probabilistically on a classical com- YC jZ( I ei l ( })
puter. The algorithm is efficient except for the repeti- (A (IZM+I ) B(I"I )ei(P ORO)) p
tion needed to obtain sufficiently good statistics. The = (8)
"distinguishable particle" quantum mechanical prop- (ei({7-¢Z}))P
agator of a system represented by the Hamiltonian where the configurations {Ji } are sampled from the

H Z.,i 1 p? + V(1Z) is expressed as [19] probability distribution P (positive semidefinite mea-
sure), and P is a real-valued function. One imme-

G(Z--). Z'; t) = ("',tje-iHtI -Z, 0) diately sees that the origin of the dynamical sign

7•(t)=IR.' problem is the oscillatory phase factor ei' that leads

f D[7Z(t)]eiSIR(t)], to large phase fluctuations at long times. Manifestly,
17te , (5) I(eiQ({R)) pI --, 0 in an exponential fashion as t gets

R(0)=7Z larger. Therefore, the total statistical error for the eval-

where the measure uation of CAB(t) grows exponentially with time be-

D cause of large cancellations both in the numerator and
D[IZ(t)] = lim (27rit/M)-g dTZl ... d7ZM-I, denominator. The so-called "fermion sign problem" is

M--+0 a particular case of this problem when eio = + 1 and
and the action time is imaginary [21 ].f d 2 Will a quantum computer solve this problem? One
S[R.(t)] = drj I(I d T J) - V(1Z(r)) 1 . (6) often hears that it will because a quantum computer

0 is a physical system, whether a system of fermionsor not, and physical systems have no dynamical or
Bosonic or fermionic statistics are introduced by ap- fermion sign problems. Furthermore it has been ar-
plying the corresponding symmetrization operator to gued that there are means for mapping most physi-
the propagator, Eq. (5). However, because the dynam- cal systems to a quantum computer in such a way that
ical sign problem occurs for any particle statistics, we the quantum computer's controlled evolution mimics
will ignore particle statistics for the sake of simplic- that of the physical system [3,22]. A closer look, how-
ity. ever, makes the situation less clear. A quantum corn-

The description of the properties of different phys- puter is a computer, and as such it suffers from lim-
ical systems in terms of correlations of physical ob- ited accuracy. More importantly this type of computer
servables is the natural way to compare with available predicts results stochastically, meaning each measure-
experimental information. In this regard, linear re- ment is one member of the ensemble of measurements
sponse theory provides a way to compute the response possible from a distribution specified by the modulus
of a system to a weak external dynamical perturba- squared of the wave function for the Hamiltonian H
tion [20]. This linear response is always expressed in modeled by the quantum computer. For a fixed physi-
terms of a time correlation function of the dynamical cal time t > 0, how accurate is an individual measure-
variables that couple to the perturbation. For exam- ment, how accurate is the expectation value of these
ple, if we were to apply an external time-dependent measurements, and how controlled is their estimated
magnetic field and we wanted to calculate the average variance? Is the level of accuracy and control achiev-
induced magnetization, we would have to compute a able polynomially with complexity and t?
time-dependent magnetization-magnetization correla- There is an area where a problem similar to the sign
tion function. The two-time correlation function be- problem has been recognized and resolved by quan-
tween arbitrary local dynamical variables A and B tum computation. Recently it was shown that quan-
is tum computation is polynomially equivalent to clas-
CAB(t) = (A(t)B(0)) = (eiHtAe-iHtB), (7) sical probabilistic computation with an oracle for es-

timating the value of simple sums of rational num-
if the Hamiltonian is time independent. Generically, a bers called quadratically signed weight enumerators
stochastic estimate of CAB (t) is (QWGTs) [23]. In other words, if these sums could be
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evaluated, one could use them to generate the quan- lem, we then argue by using standard error correction
turn statistics needed to simulate the desired quan- analysis developed for the standard model of quantum
turn system. More specifically, what was demonstrated computing that these gates will enable sufficiently ac-
was the obtainability of expectation value of opera- curate measurements of correlation functions so the
tors in quantum computation by evaluating sums of the accuracy of the average of these measurements will
form be dominated by the statistical error. The statistical er-

S(A, B, x, y) = (--l)bTBbxIbIyn-Ibi (9) ror is problem dependent but polynomially bounded,so that the difficulty associated with phase-weighted
b:Ab=O averages is eliminated.

where A and B are 0-1-matrices with B of dimen-
sion n x n and A of dimension m x n. The vari-
able b in the summand ranges over 0-1-column vec- 3. Models of quantum computation
tors of dimension n, bT denotes the transpose of
b, ibI is the weight of b (the number of ones in The quantum control model of quantum computa-
the vector b), and all calculations involving A, B tion assumes the existence of physical systems that
and b are done modulo 2. The absolute value of can be controlled by modulating the parameters of the
S(A, B, x, y) is bounded by (IxI + IyI)'. Quantum system's Hamiltonian Hp. The control possibilities
computation corresponds to the problem of determin- are abstracted and used to implement specific quan-
ing the sign of S(A, lt(A), k, 1) with the restrictions tum gates that represent the unitary evolution of the
of having dg(A) = I, k and I being positive inte- physical system over a time step obtained by specific
gers, and IS(A, lt(A), k, 1)1 > (k2 + 12)n/2/2. dg(A) modulations of the Hamiltonian. In most treatments,
is a diagonal matrix formed from the diagonal el- the physical systems, together with the gates, are then
ements of A and lt(A) is a lower triagonal ma- taken as the abstract model of quantum computation.
trix formed from the lower triangular elements of The quantum control and quantum gate viewpoints
A. Details of this quantum algorithm can be found are effectively equivalent, but to tie the computational
in [23]. model to the physics simulation problem more closely,

The main point is that these sums are similar to we choose to describe quantum computation from the
the numerator of Eq. (8), and attempts to estimate point of view of quantum control; that is, we will
them by random sampling result in exponentially bad assume an Hp. In this context we begin by giving
signal to noise ratios. In the case of QWGTs, quantum the standard model of quantum computation and then
computers can estimate the sum exponentially better defining an alternative model based on fermions.
than classical computers, but the estimate is not Defining a model of quantum computation consists
exact. The situation for the dynamical sign problem of giving an algebra of operators, a set of controllable
is similar: Quantum computers cannot obtain exact Hamiltonians (Hermitian operators in the algebra), a
values for the desired correlation functions, but can set of measurable observables, and an initial state of
obtain estimates sufficiently exact to avoid the sign the physical system. In the simplest case, the observ-
problem suffered by the known classical algorithms ables are measured by the method of projective mea-
and to yield usable information about the physical surements, and the initial state of the physical system
models simulated. is an expectation value of the algebra's operators.

In this paper we will show explicitly how the sign
problem is avoided in the case of simulating fermi- 3.1. Standard model of quantum computation
ons. Below we will give a means for translating lo-
cal fermion Hamiltonians into the Hamiltonians avail- The standard model of quantum computation
able in the standard model of quantum computation. (Deutsch's quantum network representation) is based
In contrast to quantum simulations on a classical com- on an assembly of two state systems called qubits, con-
puter this translation prevents uncontrolled exchange trolled by one- and two-qubit Hamiltonians, and on
processes that are the dominant source of the fermion a measurement process determined by one-qubit ob-
sign problem. With respect to the dynamical sign prob- servables.
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Operator algebra. It is convenient to define the form exp(iar . r/4) and exp(ia'aJrr/8). In the quan-
standard model through the algebra of operators acting turn network representation of the standard model, an
on the qubits. This algebra is generated by the unit and algorithm is a specific sequence of these operators ap-
Pauli matrices ao, acy and az for each qubit j, plied to the initial state of the qubits.

1= (0 0). (= 0 ) Initial state. The initial state of the qubits is assumed
1 '(---- 1 0 (10) to be an n term Kronecker product of the state 10) =

(0i i) (1 0) (1) which is an eigenstate of or with eigenvalue 1.
ay 0 a= -- "The state is completely determined by the expectation

These matrices represent quantum operators with values (0Ia] 10), which are 1 if the aii. are all a/ or

mixed commutation relations and span the space of the identity, and are 0 otherwise. Physically, the initial

complex-valued 2 x 2 matrices. For qubits j 0 k, the state has all "spins" up.

a's commute, and for qubits j = k, they satisfy the Measurement. The final feature of the model of com-
relation a,,ar + arvar, = 261,,n (/t, v = x, y, z). For a M a u e e t h i a e tr ftem d lo c m
quantum register with n qubits, one may take the op- putation is the specific means for extracting informa-

tion after a sequence of operations has been applied to

erator ac, defined in terms of a Kronecker product the initial state. In the standard model, it is always pos-

= 1 * 0... at, ®... 0 1 sible to apply a projective (von Neumann) measure-
ment [27] using the observables a'. With this capa-

jth factor bility, it is unnecessary to give an initial state explic-

of matrices acting on n two-dimensional linear spaces. itly, as the desired state can be prepared by using mea-

Thus ai, admits a matrix representation of dimension surement and operations. To learn the expectation of
2n x 2n. an observable at the end of an algorithm, one repeats

the algorithm and measurement procedure many times
Control Hamiltonians. Control of qubits is achieved and averages over the measurements until the desired
by applying Hamiltonians that act on either one or accuracy is achieved.
two qubits. A theorem [24,25] in quantum information
processing says that a generic operation on a single For a description of the standard model of quantum
qubit and any interaction between two qubits is suffi- computation in terms of quantum Turing machines,
cient for building any unitary operation. We take see [28]. Quantum networks are discussed in [24].

S( +Introductory descriptions of the standard model may
Hpt) i~[cxx(t)uj + cXYJ(t)o'] be found in [29,30].

J

"+ a aij (t)Wa aj, 3.2. Fermion model of quantum computation:

i j Grassmann chip

where the ct(t) are controllable. Ideally, no con- Somewhat analogously, we now describe a standard
straints on the control functions are assumed. How- model of fermion computation. For simplicity we
ever, it is often simpler to design the required con- only consider spinless fermions, ic fermions without
trol by assuming that only one of the ortt) is non- internal spin degrees of freedom, although we could
zero at any time. A quantum algorithm for this have considered more general fermionic algebras with
model of quantum computation consists of prescrib- internal degrees of freedom [9]. Physically, a system of
ing the control functions [26]. A convenient measure spinless fermion might be a system of spin- electrons
of the complexity of such an algorithm is the integral in a magnetic field sufficiently strong to polarize it

fo dt'-• (t') (the action of the algorithm). The fully. The basic system of this model is a state (or

quantum gates are simply specific unitary evolutions fermionic mode) that can be occupied by 0 or I
that may be implemented in terms of Hp. A conve- spinless fermion. We define the model for n such
nient universal set of gates is given by operators of the modes.
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Operator algebra. We define the model through the standard model. This establishes that these two models
algebra of the spinless fermion operators aj and aý for of computation are polynomially equivalent. Here the
each qubit j (j = 1 ... , n), i.e. through the algebra point of view is similar to the one used for classical
of 2n elements satisfying canonical anticommutation models of computation: the simulation of one model
relations by another establishes their equivalence.

{ai,ajl-O {a ,aJa =a ij,

where {A, B) = AB + BA denotes the anticommuta- 4. Fermion computation via the standard model
tor or Jordan product. a j (aj) creates (annihilates) a
spinless fermion in state (mode) j. Each element ad- In the previous Section we gave the elements re-
mits a matrix representation of dimension 2n x 2n. The quired for Deutsch's quantum network model of a
fermion algebra is isomorphic (as a *-algebra) to the quantum computer [ 14] and proposed a universal set of
standard model (or Pauli) algebra. The isomorphism is quantum gates (unitary operators) that allows generic
established through the Jordan-Wigner mapping [31]. propagation of systems of fermions (the fabled "Grass-

mann chip" [15]). Here we show how this propaga-
Control Hamiltonians. We take tion can be effected by the quantum spin gate. We will

demonstrate the polynomial scaling of the construc-
Hp = L[ctj(t)aj + -- o(t)at] tion of the initial state, its subsequent time propaga-

J tion, and the measurement of some observable. We

+ E'[aoij(t)(a~a] + atai)+ flij(t)aaiaaj] will also demonstrate the control of the error in the
il Jresults.i,

The first step is the observation that the set of 2n
This is a universal Hamiltonian, i.e. any other Hamil- matrices Yl, (of dimension 2n x 2n) satisfying the
tonian for a system of interacting spinless fermions Clifford algebra identities
can be generated by it. Physical operators must be
(Hermitian) products of even degree involving combi- {1', Yv} = 23,,,
nations of the creation and annihilation operators such admits a representation in terms of Pauli matrices
as the terms in the last two summands of the Hamil- (Brauer-Weyl construction)
tonian above.

Y1 =0.1, 11Y2 = cry,
I1 2

Initial state. The initial state is assumed to be an n 1  2  y4 1 2
term Kronecker product of the state 10) which is an 1 2 3 1 23

eigenstate of the number operator a~aj with eigen- Y5 = 0.1 Y0x o'6 = 0a1 a. oa3

value 0. The state is completely determined by the ex-
pectation values (Oataj1 0)= 0 for all j. Physically, [- "-
the initial state has aldmodes unoccupied. Y2n-1 =|/1 Haz' jý,a Y2. = [ j.io

Lj=1 .I tj=1
Measurement. Measurements can again be performed The following mapping of fermion operators
by using von Neumann's scheme of projective mea-
surements. In Section 4.3, we will discuss another _ 1Cr2 -
scheme more appropriate for the physical systems atSrements" In Section 4, wi,
hand. \~hand (_l)j-1I 2j-1 -- i"j

In the next subsection we show how to simulate the 2 =

fermion model by using the standard spin- model. J-1
a i J 1)J-I 1. : 2 0zj-10j

In particular it is possible to efficiently map the a-- =+ O ('' ... a+
fermion Hamiltonians to Pauli operators which can j- I
be simulated using the control Hamiltonians of the 2 (-l)-_1 Y2 1 1 2
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where tr, = (,7J + icyg.)/2, defines a *-algebra iso- e-iAt(HO°Hl+ )/Ih - H-e-iAtn1/h +hO((At)2 ). (II)
morphism to the algebra of operators of the standard i
model. It is the so-called spin-½ Jordan-Wigner trans- Each time step At is chosen so that the final error

formation [31 ], and has the property that hj = a aj - of the simulation is sufficiently small. Provided that

a+j = ½(I + trJ). We note that h j is a "local" par- the number of terms in the sum is polynomially

ticle number (or density) operator and many types of bounded in the number n of qubits or fermionic modes

interaction in physical systems are of the form "den- and provided that each term can be polynomially

sity times density" which simplifies the simulation as simulated, the simulation is efficient in n and I/error.

we will see. To see how to do the simulation, consider the

It is important to emphasize that the success of example of the bilinear operator H,. = aIaj + aja• in

our approach depends upon the mapping of algebras the control Hamiltonian of the fermion model:

(and not of Hilbert spaces). In this regard it is relevant I I j-1i
to mention that the transformation just presented is H, = I 1)- [' ... az Or

particular case of a more general set of mappings + 01 2 0 • .IT:,J-
that we would like to name generalized Jordan- (1),

Wigner transformations [9]. It is possible to imagine (l2 [x 1z o7  + or, ar, ... a2 cry
a quantum computer implemented, for example, with
a three state unit (S = 1) instead of a qubit. In such It is readily checked that the Jordan-Wigner transfor-
a case, these generalized transformations still allow mation for the other terms in the control Hamiltonians

one to simulate fermions or particles with arbitrary are also decomposable into sums of a few products of

statistics. Pauli operators.
Two additional comments are in order: The map- The whole idea of a quantum computer is simu-

ping for aj and aý described above corresponds to lating the operations we want by using unitary ma-

a one-dimensional array of spins. The extension to trices U = exp(-iAtHp/h). These unitary matrices,

higher spatial dimensions can be done [9,32,33] in var- representing quantum gates, perform reversible corn-

ious ways. A straightforward extension to two dimen- putation and are case-dependent. For our particular

sions is to re-map the sites of a two-dimensional array case, we know how to simulate H = o, in the spin-2
onto a one-dimensional string and proceed as before. case (it is directly implemented in the standard model),

Also there is nothing special about using the fermion so we ask what set of unitary operations produce

instead of a quantum spin as an alternative model of the evolution U = exp(-iAtH./h). In other words,

computation. One could have just as well used the hard how do we write a U = Ui ... Uk such that H, =

core boson [9]. The main question is whether different UWHU? Consider for example the Hamiltonian H. =
1 2 . J-I

algebras admit a physical realization. For hard-core axz .. o% a.ý. The procedure is as follows: The

bosons this realization is He4 atoms. unitary operator

4.1. Evolution U/ =ye4  [l ia']

Given a fermion model algorithm, it is necessary = (! - )® ®...®
to efficiently obtain a corresponding standard model
algorithm that at least approximates the desired evo- takes aj -- a5 , i.e. UW 1 U1  a a. The operator
lution. The general principle is to map the time- .,a I
dependent fermion Hamiltonian H(t) = >~ Hi to the U2 = e 4  z = P + ia1a.]
standard model operators via the Jordan-Wigner trans-

formation, express the result in terms of a sum of sim- takes ax-* a 1 a2 The next step is
cr _ y CZ. Tenx tpi

ple products of Pauli operators, and then use the Trot-
ter approximation U3 = e 4 1 Z
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to take a. a2 -+ - ax]a2a3ý. By successively similar functions can always be expanded in terms of the
steps we easily build the required string of operators: antisymmetric states

I 21.o j-1 jaj .as,
Ifj is odd, 10.) = F1 blIvac),

imrala, I j= l
Uj-e' : = where bt creates a state j and Ivac) = 0) 9 10) .will~~~~~~ take. cr T2j1 -)2 .will take ...2 -i1  (-1)l(-)/2Ialx ?...aI, 10) is tde vacuum state (i.e. bjl0) = 0, Vj). TheOy O Z x 'z

where [m/l] is the integer part of m/i. The final operator bt is in general a linear combination of at's,
operator i.e. b= yL ai Pij where Pij is some matrix and

Ne < n.
Uj+1 = e' The states I'0,) (ai = 1 ..... (Ne)) in general form

an overcomplete set of non-orthogonal states that span
will bring the control operator to the desired one (up the whole R-tNe, i.e. redundantly generate 1 -N,. They
to a global phase (- l)I(il)/ 2 J): are known as Slater determinants [20]. Typically, I1,)

1j 2 . -1 is the result of a self-consistent mean-field (or gen-
Z 0 Z 0  

eralized Hartree-Fock) calculation. Even a Bardeen-
If j is even, we need an additional unitary operator that Cooper-Schrieffer superconducting state, which does
flips the first qubit's a' into a a 1. This flip is achieved not preserve the number of particles, can be written inwith the operator this way after an appropriate canonical transformation

which redefines the vacuum state [34].
Uj+2 = e-1 az =0 19.One can easily prepare the states I P) noticing that

e 1®0 e• 4 the quantum gate, represented by the unitary operator

that takes ay -+ r UmI ei (bm+bt)

Hence, to construct this non-local fermion operator when acting on the vacuum state, produces bt 10) up
from the standard model requires additional steps that to a phase e'±. Therefore, the successive application of
are proportional to j. This number scales polynomi- similar unitary operators will generate the state iona)

ally with the complexity so the construction is efficient upio a ophase.
if te sandad mdel s eficint.up to a global phase.

if the standard model is efficient. Except for very small systems the total Hilbert
The one and two-body nature of naturally occurring space is too large to be fully used (it has an exponential

interactions means that a term in a second-quantized growth with increasing system size). In practice, one
representation of a Hamiltonian only has one of two works in a subspace of -N, that closely represents thefors:eihera~ o aat ata We just demonstrated
forms: either aia ora i kajaa" physical state one is trying to simulate. Generically, as
how to handle the first case. The second case merely initial state, we will consider a very general expression
requires applying that algorithm twice. This squares of a many-fermion state:
the complexity. N

Iq (t = 0))=T .I0
4.2. State preparation

where the integer N is a finite and small number. The
In this section we discuss the preparation of states state can be prepared efficiently (in N) by a number of

of physical relevance. Clearly, the preparation of the procedures. We now describe one.
initial state is a very important step since the study and To make the description simple, we will assume
efficiency of the given physical process one wants to N =_at=I Ia,,l2 =1 and (0, 10,6) = &,p•, which is equiv-
simulate depends upon it. alent to requiring {ICa)} to be an orthonormal set and

Consider a system of Ne fermions and n operators I kP (t = 0)) to be normalized to unity. With these as-
a1 (single particle states). A generic Ne-particle state sumptions the steps of the state preparation algorithm
of a Hilbert space -Ne of antisymmetrized wave are:
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(1) Adjoin N auxiliary (ancilla) qubits, each in the XIX210) 9 100) +x1y211) 0101) + y Il) 0110).
state 10), to the vacuum of the physical system. (16)
The resulting state is

10) 0 10) 0... 10) O1vac) =- 10), 0 vac). (12) (2.4) Project out the states with Ib) being 11):

N xlY2101) + yIIl0). (17)

(2) From this state generate Y-t a~) 0 Ivac) The rotations are chosen so that al = yl and a2 =

where 1a) is an ancilla state with only the a X Y2-

qubit being 11). The procedure for generating this For the explanation of step 4, we will display the
combination of states is described below, physical states. The problem is: Starting with all 10) 0

(3) For each a = 1 .... N, conditional on the a qubit 10 1 ) + a2101) 0 10,2), produce (1 4).
being I1), apply the state preparation procedure
for ( The resulting state is (4.1) Adjoin an ancilla qubit Ib) initially being 10).

N The initial state is now a l0) 0 110) 9 10 1) +
E a.lIc) 0 14,c,). (13) a210) 0 101) 9 10'2).
C1=l (4.2) Conditional on Ib) being 10), rotate the ae = 1

(4) From this state generate qubit, and then conditional on the ae = 1 qubit

N being I1), flip Ib):

1--,m_. a 10)a )a+ termswithoutI0)a. a(xi 10) 0 100) + yil11) 110)) (9 11)
(14) +a2(xl10) 0 101) + Yl1l) 0 110)) 0 12).

This step will also be described below. (18)

The final step is accepted if a measurement shows all (4.3) Conditional on Ib) being 10), rotate the ae = 2
the ancillas being returned to 10)a. The probability of qubit, and then conditional on the a = 2 qubit
successful preparation is thus YN= lIa.1 2/N = 1/N. being 11), flip I b):
Consequently, on average, N trials will be needed alxl(X210) 0100) + Y211) 0101)) 09I101)
before a successful state preparation.

The procedure to produce step 2 is most easily + a2xl (x210) 0 100) + Y21 1) 0 101)) 0 102 ).
described by example. We will assume N = 2. The (19)
problem then is to generate al I 10) 0 Ivac) + a2101) 0
Ivac) from 100) 0 Ivac). In what follows all operations (4.4) Project out the states with Ib) = 10):
will be only on the ancilla part of the initial state so we
will not explicitly show the vacuum. We also note that xlx2(a1100) 0 V4i) + a2100) 0 1(P2 )). (20)
one can always apply a rotation to a given qubit thatwill takel10) into xl0) + y[1)with 1x1 2 +1y1 2 -= 1. The The rotations are chosen so that XIX2 equals 1/V"N
steps of the procedure are: where N = 2. Comparing step 2 with step 4, onesees they are structurally identical, differing by the set

(2.1) Adjoin an ancilla qubit Ib) initially being 10). of amplitudes generated and the complementarity of

The initial state is now 10) 0 100). the subspaces selected for the final result. This latter

(2.2) Conditional on Ib) = 10), rotate the a = 1 qubit, difference in some sense makes one procedure the

and then conditional on the ae = 1 qubit being inverse of the other. For the case of N > 2, one simply

I1), flip Ib): replaces steps 2.2 and 2.3 and steps 4.2 and 4.3 by "do

X110)0100) +Yl1) 0110) (15) loops" over ct from I to N.
On average, the entire procedure needs N trials

(2.3) Conditional on Ib) being 10), rotate the a = 2 before a successful state preparation. (In many cases,
qubit, and then conditional on the a = 2 qubit the other measurement outcomes can be used also
being 1), flip Ib): to avoid too many trials.) Construction of the initial
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state thus scales as O(N2 nNe) <( O(N 2n2 ) so unless (2) Apply the conditional evolutions U1 = 10)(01 9
the number of Slater determinants is exponentially U + I1)(11 ® &n and U2 = I1)(l ® V + 10)(01 (9
large, general many-fermion states can be initialized (U = U1 U2 ). The methods of[24] may be used to
efficiently. implement these evolutions given algorithms for

U and V.
4.3. Measurement (3) Measure 2u_' = orx, + iora = 210)(11. This may be

done by measuring ax, and ay' in sufficiently many
While there is a variety of physical observables one independent trials of these steps.

measures experimentally and calculates theoretically, (4) Given the initial density matrix p, the expectation
at this time it is difficult to demonstrate that they all
can be computed efficiently on a quantum computer. (o-r* + iary)p P = 2 Trn+I [U 0) (11 Up. ® p]
Fortunately, we will now argue that one important = Trn+l [10)(11® UtVp.®p]
class of observables, the temporal correlation func-
tions CAB(t), can be computed not only efficiently but = Trn[UtVp] = (UtV)p, (21)
also accurately. These functions describe the tempo- as desired. The statistical noise in the measure-
ral evolution of some observable A(t) in response tosomewea extrna stiulu tht cople to he ys-ment of (Ut V)p is determined by that of two bi-
some weak external stimulus that couples to the sys- nary random variables and therefore depends only
tem's variable B(O). They are at the heart of under-staning fo exmple th opica proertes f mte-on the value of Trn[Ut Vp], which is inside the
standing, for example, the optical properties of mate- unit complex circle. As a result it is a simple mat-
rials.ter to determine the number of measurement at-

The goal is to determine correlations of the form terpto detere the su rement at-
CAB(t) = (A(t)B(O)) = (eiHtAe-iHtB) up to a suf- tempts required to achieve sufficient statistical ac-
ficiently small statistical error. Clearly, measuring ef- curacy.
ficiently CAB is not possible for an arbitrary A and The procedure for measuring CABt can now be
B. One sufficient condition is that A and B are effi-
ciently simulatable Hamiltonians. This observation is summarized as f Firs eress A = AO an
based on a method for determining CAB refined by Ki- Bu=
taev [35] and applied to the measurement of correla- and B =Y _Bj,. A convenient unitary operator ba-
tion functions by Terhal and DiVincenzo [36]. Here we sis that worlswell for the local observables of interest
give a different method based on an idea given in [37]. consists of all the products of Pauli operators, as each

A general principle that can be used to obtain such product is easily implemented as a quantum al-
CAB is to decompose the operator whose expectation gorithm. Then, for each j and j' one uses the just de-
needs to be determined, i.e. A(t)B(O), into a small scribed method with U =ei~ltAteiHt and V-=-Bj, to
sum of operators of a simpler form and measure each obtain (Aj (t)Bj, (0)). V may be implemented by sim-
summand individually. Our method directly measures ulating the evolution under H, applying Bj,, and then
expectations of the form (Ut V) when algorithms undoing the evolution under H.
for implementing the unitary operators U and V An alternative approach to the measurement process
are available. General correlation functions are then is von Neumann's projection method. We sketch it
determined by decomposing operators using a unitary here for completeness and comparison. In this ap-
operator basis, for example the one consisting of proach we also add an auxiliary (ancilla) degree of
products of Pauli matrices, freedom to the problem. Suppose that this extra qubit

The method for measuring (Ut V) consists of the corresponds to an harmonic oscillator degree of free-
following steps: dom le). Then, we consider the composite state

I•')s 0 Ie)0,
(1) Adjoin via a direct product an ancilla (i.e. an

auxiliary) qubit a in the state (10) + I 1))/ý2_ with where it')s = yj Xj 1j)S is the state of the system
density matrix Pa = (IL + uxa)/2 to the initial state we want to probe and Ie)t is the state of the harmonic
of the system described by the density matrix p. oscillator in the coordinate (x-) representation. The
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corresponding state in the momentum (p-) represen- comes from the discretization of the evolution opera-
tation is denoted 1ý)t. tor and the use of the Trotter decomposition. The third

Assume the observable (t-independent Hermitian is due to the statistics in measuring the desired corre-
operator) we want to measure is A. Then, we are lation function using the technique given above.
interested in determining sQ(IIA.'J')s in an efficient
way. Suppose that we know how to implement the 4.4.1. Gate imperfections
unitary operation US(t) = e-i'At. Following Kitaev we The problem of gate imperfections can be dealt
want to implement the following conditional evolution with by using quantum error correction [38,39] and

U = 1 le), ,(eIUS(t). fault tolerant quantum computation [40-44]. Accord-
t ing to the accuracy threshold theorem, provided the

From the spectral theorem we can write A = physical gates have sufficiently low error, it is pos-
Y~j Aj j)S S (Oj[. Then, sible to quantum compute arbitrarily accurately. The

fault tolerant computation implements unitary opera-

UtI0j)s 9 1I6)0 = LUIj)s 0 Ie)t tions and measurements on encoded qubits with over-

t heads bounded by O(logk(1/c)) for some k. This ex-

ponentially efficient convergence implies that the ef-
= 2 e-itj)S 0 Ie)t fects of physical noise can in principle be ignored.

t

= P9j)S 0 IA1j)t, 4.4.2. Discretization error

where 10)0 is a state with (p = 0) zero momentum. A second type of error is the one introduced
Basically, the conditional evolution U is a momentum by the discretization of the evolution operator. This

translation operator for the harmonic oscillator extra discretization is very similar to the one used in
state. Finally, classical simulation of dynamical quantum systems.

It is possible to estimate the size of this error by a
U/I'P)s 0 10)0 = E),jI )j)s 9 1Aj)t" detailed analysis of the discretization. For example,

i using the Trotter approximation

Although the second measurement method is con-
ceptually simpler, it requires approximately imple- e-(HI+H2)At = e-ittIAt/2e-it2t e-ittIAt/2
menting the ancillary harmonic oscillator, the condi- + O((At)3 ).
tional evolutions for many different choices of t, and a
more complex analysis of the measurement statistics. The coefficient of (At)3 - -i(H 1 + H2)3/6 can be
The conditional evolutions can be simplified some- bounded by estimating the largest eigenvalue of H1
what, and in special cases (such as as a subroutine of and H 2.
factoring) become very efficient-see [35].

4.4. Measurement noise control 4.4.3. Measurement statistics
Our technique for measuring the correlation func-

The quantum physics simulation algorithm de- tion (A(t)B(O)) requires measuring the expectations

scribed above is approximate and the output is noisy. of unitary operators Uj Vj, associated with the im-

In order to properly use it, we need to have explicit plemented evolution. In most cases, the operators A

estimates of the error E in the inferred expectations and B are a sum of O(mAB) products of Pauli matri-

given the noise in the implementation. Furthermore, ces, so that O(mA) UT's and 0(mn ) Vj,'s are needed.
the effort required to make E small must scale polyno- This means that the expectation is a sum of O(m Am B1)

mially with 1 /E. There are three sources of error that random variables rjj,, where Irjjj'I 1. To assure
need to be considered. The first is associated with in- that the statistical noise (given by the standard devi-
trinsic noise in the implementation of the gates due to ation) is less than E it suffices to measure each rjj,
imperfections and unwanted interactions. The second O(mAmB?/E 2 ) times.
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5. Resonant impurity scattering k= = 27nj with nj an integer. (28)
L w

5.1. Formulation of the physicalproblem There is no unique way to choose the set of nj 's. The
common convention is to define the first Brillouin zone

Our toy problem is a ring of n equally-spaced as
lattice sites on which spinless fermions hop to nearest 7r k r--- < k <, -- , (29)
neighbor sites or hop onto or from an "impurity" state. a a
The length of the ring is L = na, where a is the with k values uniformly distributed in this interval
distance between sites. The system is described by the with spacing Ak = 27r/L.
Hamiltonian (in second quantized form)

n 5.2. Quantum algorithm
H = Tcbtb

i=1 We want to write a quantum algorithm that allows

V n one to compute G(t). To this end, we start by repre-
± 7 1 (cAb+bfci), (22) senting fermion operators in terms of Pauli matrices.

+ i= Because of the form of the hybridization term a most
where T is the hopping matrix element, c is the convenient representation is the following
energy of the localized (impurity) state, and V is a bt = o+,
hybridization energy. As usual, b's and c's are fermion t
(anticommuting) operators. The index i labels the Cko = 0,+'

lattice sites (Ri = ia is the lattice site position) and
strict periodic boundary conditions are assumed, i.e. t (_ )no-I 2 n-n+l

Ck z
c C+n c 1 . (23) from which the following mapping results

We now imagine that the system is initially pre- b-b = !(I+ ,
pared in the zero temperature ground state of the ring b = )

in the absence of the impurity. Then, at time t = 0, a CkCki = +(" -o--2),

fermion is injected into the impurity state. After the Ct +b +-b'2Cko =1+2x 1 a 2-y o1 2)"
system has evolved for some time t, we want to com- kb - a x y )
pute the probability amplitude that the evolved state is Therefore, the Hamiltonian operator reads
still in the initial state. The relevant quantity to com- n-l n-I

pute is (h =1 and t >0) 2H = ++2gkI1+Eo-±+8kao±2

G(t) = (' (0)]b(t)bf (0) 1 ýP (0)), (24) i=0 1  i=O

b(t) =eintb(O)e-iHt, (25) + V(ox -x2 + alc-2), (30)

where the initial state is the Fermi sea of Ne < n where &k = -2Tcoska. An additional simplification

fermions can be introduced when one realizes that the structure

Ne-1 of the observable to be measured is such that
SIFS) = 1k0). (26) b(t) =teitb(O)e-iHt = einto-_le-i11, (31)

i=where H is given by

10) is the vacuum of fermions and

I 2 V 1 2 1

cf = e ikiRjc (27) 2a, + -2 - + 2 (o-ax 'X 
+ cry -y), (32)

•/n j=l and, therefore, the "string" one has to simulate has

The wave number kj is determined from the periodic length equal to two (it involves only qubits 1 and 2)

boundary conditions, cf+n= cý, which implies A(t) = b(t)bt(0) = eif"t ael- o-+. (33)
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If we were to transform H = UHpI Ut unitarily with and showed how this problem is avoided in quantum
U = I-jl eiH'2 tj and n a finite integer (UUt = I) in computing simulation. The evolution of quantum com-

such a way that both Hp and HP2 are physical Hamil- puters are intrinsically quantum mechanical and this is

tonians, then the simulation would be straightforward. the main difference with a classical computer that al-
(We call this type of mapping a physical unitary map- lows one to solve the sign problem. We studied sources
ping.) For our two qubit case, one can always perform of errors in a quantum computer, such as gate imper-
a physical unitary mapping with fections and the expansion of the evolution operator,

'a l i*aa iZl il _2 and argued that they would not open a back door to a
S=e' e alei e-• I zz e 4 e 4 e 4"xproblem similar to the sign problem.* r, 2 2 6 I irU 

1  
i.-a

x e-WY etI Z e- r e 4 (34) We gave a very general definition of what a model
of quantum computation is. In particular and because

Hp1 = ½(E - A2 + V2)c1rz ofour particular interest, i.e. the simulation of fermion
E+ 2 + V2 2, systems, we described the standard and the fermionic

+ A ,, models ("Grassmann Chip"). These are, of course,

with E = (E + Ek0)/
2 , A = (E - £ko)/ 2 , and cosO = not the only ones. Isomorphisms of *-algebras allow

I1/Vi-+- with S = (A + VA 2 + V2 )/ V. one to introduce more "esoteric" models [9]. Indeed,
In general, such a constrained transformation is not there is nothing special about the spinless fermionic

easily realized and one performs a Trotter decomposi- model of quantum computation. One could have used
tion a "hard-core boson" model which admits, in principle,

ei/Wt = [ellIs]M = [einzsei/x*Ys + O(S2)]M (36) a realization in terms of He4 atoms. The key point is
the implementation of the physical gates.

where H H, + Hy with nHy v- ( xor; + or; y) Our effort focused on the simulation of the dy-
and time slice s = tiM. On the other hand, one can namics of fermionic quantum systems. However other
easily perform a physical unitary mapping for eiRx.s problems can be of interest: the thermodynamic or

ei Wys = UeiHHpuIs Ut, (37) ground state properties of a Hamiltonian. Even if one
had a quantum computer, it is not clear how to use it

where Hp1 = -Z(aI to efficiently compute these quantities. On the other

•-e~ Oe 2 ' 17 (2 hand, at present, no proof exists showing that this is
not possible.

Finally, the "string" one has to simulate with the An approach that in principle could be used to
quantum computer is compute the spectrum of a Hamiltonian H (e.g., the
A(t) _ [S(s)]MolI [St(s)]MT+, ground state) or expectation values of arbitrary observ-

(39) ables is the adiabatic "switching on" in conjunction

S(s) = eiHzs UeiPI s Ut, with the Gell-Mann-Low theorem [45] of quantum

and G(t) = (A(t). field theory. The idea simply consists of introducing
a fictitious Hamiltonian

6. Concluding remarks HE (t) = H0 + fE (t)HI, (40)

We investigated the implementation of algorithms where both H0 and Hi are time independent operators
for the simulation of fermionic quantum systems, and (H = Ho + HI) and the scalar function fJ (t) is such
gave an explicit mapping that relates the usual qubit that limt-±,+ f, (t) = 0 and limt-0 f, (t) = 1, for
of a quantum computer to the fermionic modes that an arbitrary adiabatic parameter E. In other words,
we want to simulate. Our attention focused on the so- HE (t = 0) = H and H, (t = ±0o) = Ho. Ho is
called sign problem. It is a problem appearing in at- typically an operator whose spectrum is known, e.g.,
tempts to simulate classically the dynamics of quan- an arbitrary bilinear operator representing a mean-
tum systems. We reviewed the origin of this problem field solution of H and whose cigenstates can be
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straightforwardly prepared (let's call it 1'0)). The chip is used as a joke. The manuscript is "Monte Carlo Simu-
Gell-Mann-Low theorem asserts that lation of a Realistic Unified Gauge Theory", by A. Chodos and

Ui (0, -00)100) V t10 ) J. Rabin (unpublished).
lim - (41) [16] L. Onsager, Phys. Rev. 65 (1944) 117.

E-- 0 AIUE (0, - 00))100) A0 Ift) [17] S. Bravyi, A. Kitaev, quant-ph/0003137, unpublished.
if the state whose limit one is performing admits a se- [18] R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path

ries expansion in a coupling parameter characterizing Integrals, McGraw-Hill, New York, 1965.
[19] The system is composed of Ne particles moving in d spatialthe strength of Hl. This formal device generates the dimensions (h = m = e = 1), and a generic point in a flat

eigenstate adiabatically connected to I1'0). The the- Cartesian manifold of dimension D = dNe is represented by
orem does not guarantee that if 1p0) is the ground 7R = (rI ... rNe). V(1Z) is the potential energy operator and
state of Ho then IIN0) is the ground state of H. If the pi is particle's i canonical momentum.
conditions of the theorem are satisfied then computa- [20] J.W. Negele, H. Orland, Quantum Many-Particle Systems,
tion of the spectrum of H is straightforward. To our Addison-Wesley, Redwood City, 1988.tinos[21] W. von der Linden, Phys. Rep. 220 (1992) 53.
knowledge this approach has never been implemented [22] S. Lloyd, Science 273 (1996) 1073;
in practice. D.A. Meyer, J. Stat. Phys. 85 (1996) 551;

The work presented here is only a first step in a pro- S. Wiesner, quant-ph/9603028;
gram investigating the simulation of quantum systems B.M. Boghosian, W. Taylor IV, Physica D 120 (1998) 30;
using quantum computers. We have given a rather ex- C. Zalka, Proc. Roy. Soc. London A 454 (1998) 313.
plicit algorithm for a simple problem and we will in- [23] E. Knill, R. Laflamme, quant-ph/9909094, unpublished.

[24] A. Barenco et al., Phys. Rev. A 52 (1995) 3457.
crease the complexity of the problems in the work to [25] D. DiVincenzo, Phys. Rev. A 51(1995)1015.
come. An interesting problem would be to provide al- [26] From the theory of computation point of view it is necessary
gorithms to test for superconductivity in systems such to make additional assumptions on how the functions may
as the Hubbard model. Such simulations using classi- be prescribed. In particular the functions themselves must be
cal computers cannot unequivocally answer this im- classically computable in a suitable sense. This problem is

nbecause of the sign problem, but a avoided by permitting only a finite set of quantum gates instead
of continuously controllable Hamiltonians.

quantum computer could. [27] A. Peres, Quantum Theory: Concepts and Methods, Kluwer

Academic Publishers, Dordrecht, 1998.
[28] E. Bernstein, U. Vazirani, SIAM J. Comput. 26 (1997) 1411.
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Abstract

We review the basic ideas behind the quantum lattice Boltzmann equation (LBE), and present a few thoughts on the possible
use of such an equation for simulating quantum many-body problems on both (parallel) electronic and quantum computers.
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1. Quantum mechanics and fluids tuitive and physical sound basis to develop numerical
methods for time-dependent quantum mechanics. In

Intriguing analogies between quantum mechanics particular, it is reasonable to ask whether the advan-
and fluid mechanics have been pointed out since the tages brought about by lattice kinetic methods in fluid

earliest days of quantum theory [1]. The orthodox dynamics can-by means of the fluid analogy-be ex-
tenet is that these analogies are purely formal in char- ported to the context of quantum mechanics. Before

acter and do not bear upon the basic physics of quan- we put forward our discrete kinetic theory version of

tum phenomena. A less-orthodox, albeit not minor, the analogy, it is useful to provide a cursory survey of
stream of thought insists instead that quantum me- the main ideas behind the analogy itself. To this end, a
chanics, and notably Heisenberg's uncertainty prin- short recap of basic notions of quantum mechanics is

ciple, are nothing but a mirror of our ignorance of in order.

the underlying (hidden) microscopic physical level.
This leads to the puzzling theory of 'hidden variables'
which traces back to Einstein and subsequently to 2. The fluid formulation of the Schrodinger

Bohm and others [2]. It is not our intent here to en- equation

ter this fascinating and still open subject [3]. We turn
to a practical question instead: what can the analogy Let us begin with the Schrtdinger equation for
do for us in terms of numerical modeling of evolution- a non-relatistic quantum particle of mass m in an
ary quantum mechanical phenomena? The question is external potential V(.•):
legitimate because, regardless of its philosophical im-, F h 2 A+ (1
plications, the fluid analogy certainly provides an in- ih2tm! = .

where tP(, t) is the wavefunction of the material par-
E-mail address: succi@iac.rm.cnr.it (S. Succi). ticle. Upon multiplying (1) by the complex conjugate

0010-4655/02/$ - see front matter © 2002 Published by Elsevier Science B1.
PII: SOO10-4655(02)00422-8



318 S. Succi / Computer Physics Communications 146 (2002) 317-323

'P*, and the complex conjugate of (1) by (P and then [W'ka1]Jk = iMjkl*k, A =0,3 (10)
subtracting, we obtain the following set of fluid equa- with
tions:

atP + aaJa =0, (2) Wjk = jk,

atJa aP =O, (3) Wjk =ck, Wk = Pjk, Wk =-ajk,

where, by using the eikonal representation kP = -imaok + q V3jk + Aik Ja,
,o1/2 ei.

where all matrices have the standard meaning. Here

p = t/1,(4) J " A, = q V + Ja Aa is the interaction of the elemen-
h tary charge q with an external electromagnetic field

Ja = -aO = PUa, (5) described by the 4-vector potential (V, Aa).

u2  V VQ A scalar product of Eq. (10) with 4'* yields the
P =P(-y + V + ), (6) desired set of continuity equations:

and atPji+aJy=Sj, j=1,4 (11)

h2 Ap 1/2  where Pj = Vgl<ifj is the partial density of the j th fluid,
-21n p /2 () J = VP*aqk /k the corresponding current density, and

is the famous quantum potential advocated by Bohm Si = i * MJk afk is a "chemical" source term transfer-
and coworkers to support the picture of quantum me- ring mass across the different components of the rel-
chanics as an intrinsically non-local description of ativistic mixture. Note that in the above expressions
the microscopic world [4]. This configures quantum only the index k is summed upon. Unitarity, read norm
matter as an ideal (inviscid, dissipationless), irrota- conservation, implies >Lj Si = EZjk *(rMJk /k = 0.
tional compressible fluid. The inviscid character of the This is automatically secured by the antihermitian
quantum fluid stems from the reversible nature of the character of the mass matrix: Mkj + M*k = 0. As
Schr6dinger equation, a diffusion equation in imagi- promised, the fluid analogy comes by more naturally
nary time. So much for the analogy in the continuum, than in the non-relativistic case, because the Dirac
What about the discrete lattice world? Interestingly equation only involves first order derivatives. Another
enough, this analogy becomes even more compelling pleasing feature is that the external interaction is easily
once transposed into the language of the lattice world. accommodated into a formal redefinition of the mass
In fact, the lattice formulation naturally calls for an an matrix, without compromising the local nature of the
"upgrade" from the non-relativistic Schr6dinger equa- theory. The fluid interpretation of the Dirac equation
tion to its relativistic associate, the Dirac equation. is equally transparent: four types of spinning particles
Symbolically, the analogy goes as follows (DE: Dirac stream in space and, once on the same space-time lo-
equation, SE: Schr6dinger equation, LBE: Lattice cation, they interact via the "scattering matrix" Mik.
Boltzmann equation, NSE: Navier-Stokes equation): A qualitative difference with classical particle motion

is apparent, though. In a classical fluid, particles do not
DE --+ SE, (8) "mix" during the streaming phase. A type-I particle at
LBE --* NSE. (9) location x at time t with speed v propagates to x + v dt

at time t + dt and it is still entirely of type 1.
2.1. Fluid formulation of relativistic quantum A relativistic particle however undergoes mixing
mechanics during free propagation, because its spinning mo-

tion implies a rotation around the direction of motion
To unfold this analogy, it proves expedient to cast which mixes up the four spinorial components. This is

the Dirac equation into a form where all streaming why the streaming matrix is generally non-diagonal,
matrices, known as Weil matrices, become real. This echoing the fact that spin is not an ordinary vector.
is the so-called Maiorana form: In a compact four- This suggests that the discrete space-time of a rela-
dimensional notation, this reads tivistic particle should be represented by a 'hypernet-
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ted lattice' in which each link is made up of four dis- any observation on timescales longer than their pe-
tinct but communicating channels, one per spinorial riod of oscillation simply overlooks them. But they are
state. This "Hypernetted Lattice Theory" is less of a still there and more resolved (higher energy) measure-
joke than it seems. It has been recently realized that ments could always bring them back again. Note that
lattice formulations of field theory based upon spin- it is the fast mode, not the antiparticle mode that fades
ning particle motion may offer potential advantages away; the particle-antiparticle twin-link does not dis-
over more popular techniques such as path-integration solve even in the low energy limit.
[5]. This is because in quantum lattice models "instead Another interesting remark concerns the symmetry
of seeking discretized versions of the Hamiltonian or breaking induced by a non-zero mass m. If in is
the Lagrangian, a discretized version of the evolution made zero the up and down walkers do not see each
operator is introduced" [5]. In fact, what this author other and go across with no interaction, the result
finds is that "the rotation group, the Lorentz group and being the wave equation for photons. Manifestly this
spin emerge automatically in the continuum limit from is a singular limit which cannot be described by
unitary dynamics on a cubic lattice". The reader fond the Schr6dinger equation (diffusion coefficient goes
of more details is directed to the original reference. to infinity). Any non zero mass causes "collisions"

which slow down the wavepackets and confer them a

2.2. Dirac to Schrodinger: the adiabatic subluminal speed v < c as it befits material particles.

approximation 2.3. The interacting case

As noted in [6], the way the Schrrdinger equation Interactions with an external or self-consistent
is obtained as a long wavelength (low energy) limit fields are readily included by a minor extension of the
of the Dirac equation involves a sort of adiabatic "collision operator". They read as follows:
approximation which is formally very similar to the
low-Knudsen adiabatic expansion taking the (lattice) at U1,2 - Uzu1,2 = md2,1 + igd2,1, (13)
Boltzmann equation into the Navier-Stokes equations. 8tdl.2 + azdl. 2 = -mu2,1 + igu 1,2, (14)
The formal parallel emerging from this analogy is where g =eV/h is the coupling frequency of the

Kn = lt/ lM ".' = v/c, (12) potential. Self-consistent potentials, such as those
arising in connection with the non-linear Schr6dinger

where lL is the particle mean free path, lM a typical equation, are easily accommodated by making g a
coherence length of the macroscopic fluid and fi is function of the local density u2 + d2.
the relativistic particle to light speed ratio. Detailed
calculations can be found in the original reference [6]
and need not be repeated here. 3. The quantum lattice Boltzmann equation

The relativistic motion implies that any particle of
momentum Pa is invariably associated with an antipar- We are finally in the position to reformulate the
ticle with opposed momentum -pa. The symmetric basic analogy in quantitative terms. This is based
combination of these two gives rise to a smooth, emer- on the following position: The 4-spinor *j (i, t) =
gent field, 0+, whereas the antisymmetric combina- V1(X, 9j, t) is identified with a complex discrete par-
tion defines a low amplitude, high-frequency mode ticle distribution fi (.,, t) = f(ý, Oi, t). The analogy is
which decouples from the system dynamics in the tantalizing, but a minute's thought reveals two severe
limit Pi --+ 0. The scenario is exactly the same as the flaws:
adiabatic approximation in kinetic theory, with a key
difference. Kinetic theory describes dissipative phe- (1) While the 4-spinor Vfj (we consider spin 1/2
nomena in which adiabatic elimination wipes out the throughout) has always four components in any
initial conditions, the transient modes die out, never dimensions, the discrete population fi is a set of b
to return. Quantum mechanics is reversible, and fast real functions with b a sensitive function of space
modes never die out: they just oscillate so fast that dimensionality.
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(2) While LBE streaming is always diagonal in mo- one direction, say x, then 'rotates' the system so
mentum space, the three Weil matrices cannot be as to diagonalize the Weil matrix along, say, y, so
simultaneously diagonalized. that propagation along y can be performed like for

a classical particle, and finally 'rotates back' the
Both problems are intimately related to the quantum propagated solution at (x + dx, y + dy, t + dt). New
nature of the spin variable. Fortunately, there is a errors are introduced in the numerical treatment, but
way out. As observed in [6] in the limit of 'small' we shall argue that they are O(dt 2 ), namely within the
timesteps, actually much shorter than the inverse general accuracy of the LBE method.
Compton frequency wc 1 , both flaws can be circum- The quantum LBE bears many similarities with
vented by decomposing the three-dimensional particle other quantum lattice schemes discussed in the recent
motion into a sequence of three one-dimensional mo- [5,8,9] and not so recent [10] literature. What sets it
tions along the coordinate directions x, y, z. The tech- apart from all these schemes is the fact of insisting
nical key to achieve this task is a well known tool-of- on a diagonal representation of the Weil matrices,
the-trade in computational fluid dynamics: "Operator so as to retain the notion of classical trajectories
Splitting". The main use of operator splitting in Com- as much as we can. In fact, the "turn" operator R
putational Fluid Dynamics is to handle 3D problems can formally be interpreted as an "internal scattering"
as a sequence of lower dimensional ones. In quantum between particle-antiparticle states [9], thus leaving
field theory, a very similar technique goes under a dif- the concept of quantum trajectory still well defined,
ferent name: "Trotter formula": eA = (eA/n)n with n although in a generalized sense. In a pictorial sense
integer and A any 'reasonable' operator. Consider the [10], we might say that while classical particles
formal solution to the Dirac equation for a massless just "Stream and Collide", quantum particles, like
particle (the collisional operator plays no role at this swimmers, need a somersault before they can turn in
stage): space: they "Stream, Turn and Collide"! The 'Turn'

tPj (xl' + dx,,)= [edt j= I ý (X (15) thestep is a necessity induced by the internal structure of
~ (x1). 15) the relativistic particle.

Manifestly, the propagator taking the wavefunc- Leaving the details to the original work, here
tion from x1' = (x, y, z, t) to x1' + dxi' = (x + we simply report the final result for a pair of 'up'
dx, y + dy, z + dz, t + dt) is the direct product and 'down' walkers in one-dimension. Upon using
of three one-dimensional partial propagators P =_ a Cranck-Nicholson time-marching procedure (secur-
e dt J )Ila a = x, y, z (no summation upon a im- ing unitarity of the numerical scheme), the quantum
plied). This is the natural consequence of the additiv- LBE takes the following form:
ity of the streaming operator. This expression is a good
starting point for "conventional" numerical treatment u(z + dz, t + dt) = Au(z, t) + Bd(z, t), (16)
of the Dirac equation [7], but is definitely unsuitable to d(z - dz, t + dt) = Ad(z, t) - Bu (z, t), (17)
a quantum LBE formulation because spinorial states
get mixed during the propagation step, something that where
would not occur to a classical particle. 1 - S2/4

Therefore, a naive application of operator splitting A -- (18)
is not viable. 1 - S2/4 - ig'

However, we can argue that we do not need to work B I (19)with the same representation of the Dirac equation 1 - 0/4 - ig'
during the three separate streaming steps. As long as •2 = m2 _ g2  (20)
we are able to develop a recipe securing uniqueness of

the representation in x,, and X;, + dx,,, we are free of A few comments are in order.
choosing the representation that better fits our needs. First, with g = 0 (no-interaction), implicit time
The idea is to perform each 1D partial streaming marching translates into a mere redefinition of the
in the representation where the corresponding Weil particle mass m --> m' = m/(l - m2 /4). By rein-
matrix is diagonal. In practice, one propagates along stating the time-step At, it is easily recognized that
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mn -+ m in the limit At -- 0, which means that quan- 5. The quantum N-body problem
tum LBE fulfills the requirement of numerical con-
sistency. Large timesteps mAt > 1 lead to unphys- In this section we shall explore the question of
ical results, as it is to be expected since the natural whether/what the lattice techniques discussed so far
Compton frequency m (in atomic lattice units h = c = can bring any new insight into the problem of solving
At = Ax = 1), is no longer resolved. Simple alge- the Schr6dinger equation for a collection of, say, N
bra also shows that quantum LBE is unconditionally particles (quantum N-body problem):
stable and norm-preserving (the all-important unitar- N
ity condition). This is fairly remarkable for an explicit ihalcP = E[-An + V(Xn)]'P, (21)
numerical scheme [11], and ultimately traces back to n=1
the (implicit) lightcone discretization hidden behind where X, = (Xn, Yn, Zn) is the spatial coordinate of
the quantum LBE, Eq. (16). Finally, note that at no the nth particle, 0 (XI ... XN) the N-body wavefunc-
point in our treatment did we need to care about strin- tion and V the interparticle potential, typically in a
gent symmetry requirements: apparently a simple cu- two-body format V(Xn) = Zm>n V(IXn - Xm I). It
bic lattice is good enough to our purpose. This prob- has been recently pointed out [9] that quantum lattice
ably relates to the diagonal nature of the quantum- algorithms constitute excellent candidates as numer-
mechanical pressure tensor and to the fact that, unlike ical schemes for quantum computers. In the N-body
fluid dynamics, the theory is not self-interacting. Fi- quantum LBE, each quantum particle is represented
nally, we observe that quantum LBE is as computa- by bG walkers, b being the coordination number of
tionally lean and amenable to parallel processing as an the lattice, namely the number of discrete momen-
explicit scheme can be. tum states attached to each lattice site. These walkers

All in all, a good set of credentials for a numerical move around according to a fictitious microdynam-
scheme. ics whose macroscopic limit is precisely the N-body

Schr6dinger equation.
What would this N-body quantum LBE algorithm

4. Numerical tests look like?

"Simply" evolve N replicas of the single-particle
The quantum LBE scheme has been validated on quantum LBE scheme and tie them up together via

a series of one-dimensional textbook calculations, a two-body potential collecting the sum of all con-
including tributions V Zg' Zm V(Xg - XTg) at each given

site Xn. If one does not insist on the idea of a
(i) free particle propagation, particle generalized-trajectory, and turns instead to a
(ii) harmonic oscillator, 'information-network' picture, a generic quantum lat-

(iii) scattering from a rectangular barrier [ 12]. tice algorithm would take the form of a first-order, ex-

In addition, the scheme has also been demonstrated plicit, non-local, map for the complex array OP:

for simple cases of non-linear Schr6dinger equations 1j (X, t) T Tk Jk(X - VkAt, t - At), (22)

of direct relevance to Bose-Einstein condensation k

[13] (as an example, see Fig. 1). These tests pro- where Vk scans the 3N-dimensional neighborhood
vide evidence of the viability of the quantum LBE in of Xn = (Xn, Yn, z,), n = 1, N and Tik is the corn-
one-dimension. The scheme performs efficiently and, plex transfer matrix fulfilling the unitarity condition
what's more, provides stability and unitarity at a time, F, Tjl Tlk = Sjk. The kinetic energy operator is sweet
a very valuable property for an explicit scheme. As we since any walker in a given single-particle state can be
said, this is related to the peculiar light-cone space- moved independently of the others, resulting in a lin-
time marching technique inherent to quantum LBE. ear O(bGN) complexity. Unfortunately, the two-body
Higher-dimensional versions akin to the quantum LBE long-range potential generates a daunting quadratic
discussed here have been developed systematically by complexity, (bGN)2 , to say nothing of the (bG)N re-
Boghosian and coworkers [8]. quirement in computer storage .... The scheme meets
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with a "exponential complexity wall" which rules out orbital energies obtained by solving the Kohn-Sham
any possible use of conventional electronic computers equations:
for more than a few hundreds particles [ 17]. Although
this statement can probably be challenged by modem HKsqPj = E (23)
multiscale techniques (Achi Brandt, private communi- where the Kohn-Sham Hamiltonian consists of four
cation), we shall assume that such exponential com- contributions
plexity is indeed beyond electronic computation ca- 2
pabilities. This brings us back to quantum computers. HKS -- Aj + Vext(i)
Since the matter of solving the N-body Schr6dinger 2m
equation in full on a quantum computer has been de- -e2f n(3) d5+V(
scribed in the existing literature, here we shall take + J d V[n]. (24)

a different path, and discuss how efficient real-space The first two contributions are the usual kinetic en-
single-particle quantum solvers may contribute to ad-vanc ng he N bod fro tie wihoutsol ing he ull ergy and external potential operators, the third one re-
vancing the N-body frontier without solving the full lates to the self-consistent Hartree-Fock potential. Fi-
N-body Schrcdinger equation. Incidentally we note nally, the fourth one is an effective 'exchange' energy
that this is of actual interest not only for current elec- functional which collects the effects of N-body inter-
tronic parallel computers, but hopefully also for actual actions. The idea is that an effective functional of the
software emulators of quantum computers [14,15]. electron density exists such that the ground state en-

ergy of a fictitious system of independent electrons
5.1. Quantum LBE and Density Functional Theory moving in such a potential is exactly the same ground-

state energy of the interacting system! Describing how
As previously discussed, numerical algorithms for such a magic comes about is certainly beyond the

the quantum many-body wavefunction are very hard scope of this work. Here, we shall simply remark
(to say the least) on electronic computers. Many ways that Density Functional Theory heavily leans on the
out have been developed to cope with this problem, intuitive picture of a quantum many-body system as
including, a backbone of ions tied up together by a very mo-

bile electronic fluid. In this respect, it certainly puts
(i) Quantum Monte Carlo techniques [ 18], a premium on efficient real-space solvers for the one-

(ii) Multiscale methods [19], particle (non-linear) Schrrdinger equation, both in the
(iii) Effective one-body theories, time-independent (ground-state) and time-dependent

(excited states) form. A practical scheme which could
In this paper, we shall be concerned with option be implemented today on either electronic or quantum

(iii). computer emulators is briefly outlined in the follow-
Effective one-body theories developed in the last ing.

fourteen years permit to learn a great deal about the Consider the task of solving a set of N effective
properties of quantum many-body systems without time-dependent, one-particle, Kohn-Sham equations
ever invoking the use of many-body wavefunctions. coupled via an effective potential VKS[p]:
Particularly successful in this respect is the famous ih tt j = HKSqj. (25)
Density Functional Theory developed in the 60's
by Hohenberg-Kohn and Kohn-Sham [16,17]. The Since the LBE grid is uniform, the non-local Hartree-
core idea of Density Functional Theory is that the Fock potential is best turned into the correspond-
ground state of a many-electron wavefunction (nuclei ing Poisson problem A VHF = n, which is efficiently
are regarded as classical particles on account of solved by standard methods such as rapid ellip-
their higher mass) is uniquely determined by the tic solvers or Fast-Fourier techniques. The exchange
electronic density n(i) = y>j 1jl2 (T), where Oj are functional is local and can therefore be handled by
one-particle orbitals. The ground-state energy can the same procedure already discussed and tested for
then be obtained by summing up the single-particle Bose-Einstein condensation.
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1-- >contributions, form the effective potential VKS and
2 >- send it back to each processor to initiate the next time

step. This process can be performed fairly efficiently
on a electronic parallel since it entails a very lean

4- > communication-to-computation ratio. For instance, a
t; t+dt parallel computing consisting of P = N processors

Sketch 1. Parallel solution of the set of N Kohn-Sham equation would solve the N-body problem in (slightly more
(N = 4). The double line = indicates the serial phase in which than) the same time it takes a serial one to solve the
each slave processor forwards its partial density to the master and single-body quantum equation. Since the same state-
subsequently receives the effective potential to initiate the next step. ment applies to a single-processor quantum computer,

BE~evo~ufion:VH=11128,VN=1/50 one might dream of quantum-computers applications
0.014 1t of paramount scientific problems, such as electronic0.01 f • • ' • 'RHO+.I•O'

'V(4t=01 structure calculations of large molecules of biological
'RHO+.4=25000' interest.

0.012 - N(Z) =250i e
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Abstract

We demonstrate a strategy for implementation a quantum full adder in a spin chain quantum computer. As an example, we
simulate a quantum full adder in a chain containing 201 spins. Our simulations also demonstrate how one can minimize errors
generated by non-resonant effects. © 2002 Published by Elsevier Science B.V.
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1. Introduction "bi", which are in a superposition in a quantum com-
puter register. The basic idea for the full adder is well

A full adder is a basic component of a conventional known [ 1,2]. However it is not clear how to implement
computer and a welcome asset for quantum comput- this idea in a many-qubit spin quantum computer. It
ers. In particular, the Shor quantum algorithm requires is even less clear how to simulate accurately a quan-
modular exponentiation, f (x) = ax (mod N), which tum full adder having a large number of qubits using a
cannot be computed without a quantum full adder. The conventional computer. One must understand the role
question arises: What is a full adder in a quantum com- of non-resonant effects and how to minimize them.
puter? A quantum computer operates on a superposi- One must also know the structure of the error states
tion of numbers simultaneously. What is not clear is caused by non-resonant effects. Our paper provides
what it means to add two superpositions. One defin- an answer for these issues. To implement a quantum
ition of a full adder in a quantum computer is that a full adder, we propose to use a sequence of electro-
full adder is a gate which adds a given number to a magnetic 7r-pulses on a spin-chain quantum computer.
superposition of numbers. This full adder must simul- We have simulated the dynamics of this quantum full
taneously add a definite number, "a", to all numbers, adder with 201 spins, on a conventional computer; an-

alyzed unwanted non-resonant effects; and determined

Corresponding author, the structure of the error states and ways to reduce
E-mail address: gpb@lanl.gov (G.P. Berman). non-resonant effects.

0010-4655/02/$ - see front matter © 2002 Published by Elsevier Science B.V.
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Table I where "a" and "b" are the addend bits and s' is their
Table of binary addition sum, c and c' are the input and output carry bits.

a b c st cl ab ÷ ac e bc Namely,
0 0 0 0 0 0

0 0 1 a 0 0 F 32 1 (0) = C 12 C 123,
0 1 0 1 0 0 F 3 2 1 () = C 12 C1 2 3 C 2 C2 3 .
1 0 0 1 0 0
0 1 1 0 1 1 We use the convention that the right gate acts first.
1 0 1 0 I 1 Let us check the action of the full adder, ['321, for
I 1 0 0 1 1 example, for a =b =c = 1. We use F321 (1):

C23 103 c2b1) = C23103 1211 ) 1131211). (3)

2. A classical full adder In (3), the second control qubit has the value "I". So,
the third target qubit changes its value from "0" to "I"

A classical full adder operates with an input of Next,
two addend bits, "a" and "b", and a carry bit, "c".
(See Table 1.) In Table 1, s' and c' are the output C2 113 12 11 )=11 302 11 ),
sum and the carry-over, respectively. The sum, s', can C123 1130211) = 1130211), (4)

be easily expressed as s' = a @ b e c (where ED is C 12113 02 11) = 1131211) = [c'sbi).
addition modulo 2). The formula for the carry-over
is more complicated. One can see from Table 1 that Thus, in accordance with the Table 1, we obtain,

c'=abDacEbc. b= 1, s'= l, c'= l.

3. A quantum full adder 4. A spin chain quantum computer

We describe the basic idea of a quantum full adder An atomic chain quantum computer based on
first suggested in [1]. The full adder quantum gate triplets, ABC ABC ABC., was first introduced in
(F) depends on the value of the bit "a". If a = 0, the [3]. The implementation of this idea for a chain of
quantum computer applies the gate F(0). If a = 1, it spins interacting through the Ising interaction was
applies F(1). The F-gate can be expressed in terms of given in [4]. Ising-type spin chains have been used
the Control-Not (Cik) and Control-Control-Not (Cikp) for quantum computation in a statistical ensemble of
gates. A Cik-gate changes the value of the target qubit, quantum computers [5,6]. In [7], we considered a sim-
"k", if the control qubit, "i", has the value "1". A Cikp- ple model-a chain of identical spins in a non-uniform
gate changes the state of the target qubit, "p", if both magnetic field.
qubits, "I" and "k", have the value "1", The present paper is based on [4,7]. We con-

Cikl.. .fl... nik...n ) = I... ni,... (ni @Gnk)k...), sider a chain of spins (e.g., nuclear spins) in a non-
Cikp .. .ni ... nk...np ... (1) uniform magnetic field. Similar to [7], the angle, 6-),S.( between the direction of the chain and the direction

* ... ni...k ... [(nink)D npp ... of the permanent magnetic field (z-direction) satis-

We shall also use the Not-gate which can be fies the condition: cos 0 = 1 /v¶. Then, the dipole-

designated by Ci. It changes the value of the ith qubit dipole interaction between spins is suppressed, and the

independent of the values of all other qubits. Using Ising interaction becomes dominant. We suppose that

these gates, we can transform the state, 103 c2bI), into our chain consists of a periodic sequence of triplets,

the state, Ic's'bl), ABC ABC ABC .... The triplet, ABC, can be differ-
32I~ ent nuclear spins or identical spins in slightly different

F32 1(a)0 3c2bl) = icsb), (2a) environments. For definiteness, we shall keep in mind
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this second case [7] with the following typical para- with its neighbors. So, we replace it with the following
meters, sequence of gates,

wi/27r - 400 MHz, Wk = w1 + (k - I)Aco, C123 = C 23C 32C 23 C 132C 23 C3 2C 23 . (8)

Aw/27r ~20 kHz, (5) Let us check this equation, for example, for the state,

JAC/ 2 7r 100 Hz, JBC =2JAC, JAB = 3JAC, 1031211). From the left side of Eq. (8) we have,
where wl is the Larmor (angular) frequency of the
right end spin, Wk is the Larmor frequency of the kth C 123103 1211 ) = 131211), (9)
spin, Jik is the constant of Ising interaction between as the first and the second qubits are in the states, 1 1),
the ith and kth spins. the third qubit changes its state. Next, we follow the

In the presence of a circularly polarized transverse operations on the right-hand side of (8) to show that
magnetic field, the Hamiltonian of the system can be the same result is obtained. From the right side of
written as [8], Eq. (8) we have,

R -E wk I- 2JAkk+Illkk+I C 2 3 103 12 1 1 ) = 1131211), C 3 2 1131 2 11) = 1130211),

k k C 23 113 02 11) = 1130211), C 1321130 2 1 1) = 1131211),

2 Z{/U- exp[-i(wt + 0)] C23 1131211) = 1031211), C32103 12 11) = 1031211),

+ I+ exp[i(cot + ± )], (6) C23 103 12 11 )=11 3 12 11 ), (10)

where P' is the nuclear spin operator, to and 49 are which coincides with the right side of Eq. (9). Now,
the frequency and the phase of the transverse mag- instead of (2b), we have the following expression for
netic field; S2 is the Rabi frequency (the magnitude of the full adder, F,
the transverse magnetic field in frequency units), and F 3 2 1 (0) = C12C23C32C23C132C23C32C23,

F 3 2 1 (1) = C 12 C 2 3 C 3 2 C2 3 C1 3 2 C 2 3 C 32 C2 3 C2C 2 3 .

Next, we explain how to add the numbers b and
5. Implementation of the quantum full adder a. If a° = 0, the quantum computer applies the gate,

First we shall define our problem. Suppose that F32 1 (0). If a° = 1, the quantum computer applies the

we have a number Ib) b lb(L- 1 ) ... b(0 )), b(m) = 0, 1. gate, F32 1 (1). According to (2), the result is,
In decimal notation, b - b(L-1) 2 L-1 + ... + b(0)2 0 . F 3 2 1 103 0 2 b 0 ) = 1csob) (12)
(Below, we omit parentheses in the superscripts.)
Note, that in general, we have a superposition of many where we have replaced s' by so = a° • b°, and c' by
numbers, Ib)i, and any gate must act on all of these C1 which is the carry-over for the next addition of bl
numbers simultaneously. We are going to add to a and a1 .
number jb) (all numbers, bi, in a superposition), a Next, consider the five right most qubits,
definite number, a = aL- .. .aO, where am = 0, 1. To 105b'c'sobl). (13)
achieve this goal we shall use 2L + 1 qubits. We load 4321

the number b in a chain of qubits in the following way, To add bl and a1 and the carry-over, cl, we should
I02L+I-2LLI2LIV 2

2 ... 05b 10302 b0 . (7) first make a swap, S, of the values of the fourth and
41l 'the third qubits,

This means that we place two additional qubits in the
states 10) in front of the qubit b?, and one additional S 43 I blc) = cl4b). (14)
qubit in the state 10) in front of all other qubits b", The swap gate, Sik, can be represented in terms of Cik
m-#0. M :A 0.gates,

The gate C 123 is not convenient for our spin chain
quantum computer in which each spin interacts only Sik = CkiCikCki. (15)
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iiLet us check, for example, the action of the S21 gate Here o0k corresponds to the kth spin whose left
on the state, 10211). Using (15), we have, neighbor is in state 1i) and whose the right neighbor is

S2 1 = C 12 C 2 1 C 12 , in state IJ). Similar expressions can be found for spins
in positions (3n - 1) and (3n), the B and A spins,

C12I0211) =-1211), C2111211) --11201), (16) respectively. The end spins have only two frequencies.

C1211201) = 11201). For the left end spin, A,

Thus, the S-gate transforms the state, 101), into the 00 2L+1± JAB, ( W2L+l -AB,

state, I10). W2L+1 2L+1

After the action of the S43 gate, the state (13) (22)
changes into, and for the right end spin, C,

105c'b4bs). (17) 00=1(0 + JBC, (l =o(1 -- JBC (23)

The state, 105c'bl), has the form (2a), and it is ready4 3 Now, to implement C23, we apply a 7r-pulse with
for application of the full adder, F54 3, frequency w°' and then a 7r-pulse with the frequency

F543 105 c'3) = b 1b). (18) w 1 . One of these two pulses definitely changes the

Certainly, we use F543 (0) if a 1 = 0 and F543 (1) if state of the third spin if the second spin is in its excited
a1 = 1. Thus, we obtain the sum, s'= a1 E b c, state, I1). To implement the gate C 123 , we need a
and a carry-over, c2, for the next addition. It is clear single ;r-pulse with frequency w( 1. To implement a
that by repeating the application of gates F and S, Not-gate, C2 , which appears in F 132 (1), we have to

iJwe shall obtain the desired answer. A complete full apply four 7r-pulses with all possible frequencies, o2 ,
adder, F, can be represented as a combination of the i = 0, 1, and j = 0, 1. The total number of pulses
elementary full adders, Fijk, and the swap-gates, Sij, required to implement a Fijk (0)-gate (if i $ 2L + 1,
F = F2L+I.2L.2L-I(aL-I)S2L,2L-1... k # 1) is 15: two pulses for each Control-Not gate

F2 -and one pulse for the Control-Control-Not gate. For
F765(a2)S65F543(a)S43F321(a°). (19) the Fijk(1) gate, the total number of pulses is 21 (16

After the action of the full adder, the superposition pulses for the left triple of the chain). The swap gate,
of the states (7) transforms into the superposition of Sij, requires 6 pulses.
states, Thus, to add L-qubit numbers, our proposal re-

CLSL'bL-SL- 2 bL-2 ... sob . (20) quires (2L + 1) qubits and less than 27L 7r-pulses.

Thus, the qubits in even positions and the left end
qubit carry the results of addition. The problem is: 6. Simulations of a quantum full adder
How to implement all of these gates using 7r-pulses?
We suppose that •Q << Jik, say S2/27r ; 10 Hz. For numerical simulations of a quantum full adder
This allows us to excite each spin individually. To we used the following assumption: the frequency
implement F32 1, we use Eqs. (11). As an example, difference between two neighboring spins is much
we show how to implement F32 1 (0). According to greater than the Rabi frequency. As a result, the
Eqs. (11), first we implement C23 , then C32, and so selective excitation of a chosen spin has a small effect
on. Suppose we have an integer number of triples, on all other spins. At the same time, we take into
ABC, in our spin chain. Then, we have 4 possible account the action of a 7r-pulse on non-resonant states.
frequencies in the position (3n - 2) which correspond For example, suppose that the frequency of a 7r -pulse
to a spin C: is: w = w(1 . This pulse is resonant with spin "3" only

00 if the neighboring spins, "1" and "2", are in their
WMn 2 = (03n-2 ±1 BC + JAC, ,aei hi

01 n- excited states. The states in which the spin "3" has
603n -2 = (03n-2 + JBC - JAC, (21) frequencies, °, 0coo, and w, are non-resonant for
10 ( f

03n2 = °3n-2 - JBC + JAC, the pulse with co = co''. We take into consideration the
11 transformations of all these non-resonant states.(03n 2 = W3n-2 - 'BC - JAC.trnfrainofalteeo-esatsae.
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Note, that any pulse in our simulations acts on 1020112000199.. .031211). (28)
all basic states in the quantum superposition. The For the value of Q2 = D2o which approximately
resonant state transforms into a state with the opposite satisfies 2zrk-condition, we have for the probability of
direction of the resonant spin. Every non-resonant the expected state (28): Po = 0.99889. The number,
state transforms into the superposition of two states: N, of error states with probability P > 10-12 is
the initial one and an error state generated by the non- only 304. Small deviations from the 27rk-condition
resonant transition. If the probability of an error state significantly influence the result. As an example, for
is less than a chosen small number, E, our computer £2 = 0.10021, the value of P0 decreases to 0.98300,
program automatically removes it. One can argue that and the number of error states, N, grows to 46530.
every removed state can generate a number of new Fig. 1 shows the dependence of P0 and N on the
states. However, suppose that we have removed a Rabi frequency, £2 in the vicinity of D2o. One can
state with a small probability, P. Due to the main see that the probability, P0, smoothly decreases by
property of the unitary transformations, the sum of approximately 1% when the Rabi frequency, £, shifts
the probabilities of all states generated by the removed from £o by approximately 0.1%. Unlike the value
state (including itself) is P. Thus, the total probability of P0, the number of error states with probability
of all neglected states cannot increase in spite of > 10-12 does not change in the close vicinity of £2o.
generation of new states! But it sharply increases when the deviation of £2 from

We have simulated the addition of the 100-digit D2o approaches 0.15%. Fig. 2 shows the probabilities
numbers in a 201 spin chain. To minimize non-
resonant errors, we used the 27rk-method [7,8]. The 1
basic idea of the 27rk-method is the following. One 0.995

chooses the Rabi frequency, £2, of a resonant 7r-pulse
in such a way that it becomes approximately a 27rk- 0oo 0.99 1

pulse for all non-resonant transitions (where k is an in- 0.985 i
teger which generally is different for different states).
"A 27rk-pulse does not generate unwanted error states. oM0.o099 0.1000 0.1001 0.1002 0.1003
"A transformation of a basic state under the action of a 30__
7r-pulse was described in our previous paper [7]. The
following values of dimensionless parameters were 20000
chosen, z

JAC = 1, JBC = 2 , JAB = 3 . (24) 10000" I
We found that all non-resonant transitions approxi- 0 • •
mately satisfied the 27rk-conditions for the value of 0.0999 0.1000 0.1001 0.1002 0.1003

the Rabi frequency, £2 = S20 = 0.10005.
Next, we present the results of our numerical Fig. 1. The probability of the expected state, P0 ; and the number of

simulations. As an example, we add the "classical error states, N, as a function of the Rabi frequency, £2.
number", lo05 1.02o1o

199098... 00 (25) C. -.................. 1.01e10

(299 in a decimal notation) to the "quantum number", 5eo6 1 1.ooo10

099... 0110 (26) 19.0011

(1 in a decimal notation). The sum of these two 0 2 9,-80 00 0

numbers, 0 10000 20000 0 o10o 20000
generated states generated states199098 ... 011l0, (27)

Fig. 2. "Line spectrum" of the probabilities, P, of error states
corresponds to the quantum state of the chain of 201 (£ = 0.10021); (a) the region: P _ 10-6, (b) the region:
spins, P - 10-10.
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of error states (the states are shown in the order of their and so on. Here 03ijk corresponds to the electron
generation). One can see a specific "line spectrum" frequency for the case in which the nuclear spin of
of the probabilities: the error states are "attracted" to the same ion is in the state Ii), the nuclear spin of
a few discrete values of the probability. Very similar the neighboring A-ion is in the state 1k), and the
effects were obtained for other examples of addition nuclear spin of the neighboring C-ion is in the state
including the addition of a "classical" number to a Ij); Wa is the Zeeman frequency, jAB and jBC are
superposition of two quantum numbers. the constants of the electron-electron interaction, A B

is the hyperfine constant (in the frequency units), and
jan and JBC are the constants of the electron-nuclear

eno en

7. Phase control interaction for neighboring ions.
Thus, the ESR frequency depends on the position

of an electron spin in the chain (because the Zeeman
The quantum full adder implementation considered frequency is nonuniform) and the states of three

above provides a transformation of an arbitrary super- nuclear spins-the nuclear spin of its own ion (via
position of "quantum numbers", qw , into a superposi- the hyperfine interaction) and the nuclear spins of two
tion of numbers (q, + a), where a is any given "clas- neighboring ions. One can tune the frequency of an
sical number". However, this proposed scheme also electromagnetic pulse in such a way that it is resonant
generates complicated phase differences between the with the electron spin only if it is in a definite position
states of the quantum superposition. This effect can in the chain and the three nuclear spins mentioned
be inappropriate, especially for the Shor algorithm. In above are in definite states.
this section, we describe how to extend our simple The strategy for phase correction for the quantum
model to incorporate phase restoration after the action full adder is the following. The full adder is imple-
of every zr-pulse. mented by a sequence of the nuclear 7r-pulses. A nu-

Consider the chain of paramagnetic ions ABCABC clear zr-pulse causes a phase shift of zr/2 for the reso-
containing nuclear spins in a high nonuniform mag- nant states. There are six possible phase distortions for
netic field. Every electron spin interacts with the nu- non-resonant states (3 possible states for neighboring
clear spin of its ion via the hyperfine interaction. Elec- nuclear spins times two possible states for the selected
tron spins interact with each other through the Ising in- nuclear spin). Correspondingly, one has six possible
teraction. All electron spins are in their ground states. frequencies for the electron spin of the selected ion in
The nuclear spins also interact with each other through the non-resonant state. Because of the large value of
the Ising interaction. This interaction is responsible for the electron gyromagnetic ratio, we assume that each
quantum logic gates. The dipole-dipole interaction is of the corresponding electron transitions can be driven
suppressed due to the use of the magic angle between without noticeable non-resonant effects on the elec-
the chain and the direction of the external magnetic tron transitions with close frequencies. After the nu-
field. The key point of our model is the following: we clear zr-pulse, one applies 12 electron zr-pulses: two
consider the interaction (for simplicity, the Ising inter- zr-pulses for every possible frequency of the selected
action) between an electron spin and its two neighbor- electron spin in the non-resonant state. The phase of
ing nuclear spins. This interaction can originate, for the first zr-pulse is zero, the phase of the second one
example, if the electron density at the neighboring nu- is 0k. The total phase shift of the wave function of the
clei is not zero. Thus, the electron spin frequency for ion is (zr + 40). By choosing an appropriate value for
a particular ion can take eight values. As an example, t0, one can change the phase shift for a specific non-
for the B-ion one has, resonant state to the value of zr/2, which corresponds

to the resonant state. After the action of 12 electron
w°°° = We + jAB + jBC + AB/2 + jAB + jBC 7r-pulses, all states in the quantum superposition will

Co100 = We + jAB + jBC - AB/2 + jAB + jBC have the same phase, and all electron spins will be in
10 C A en Ctheir ground state. Thus, the phase distortion generated

0 We JA +- Je - /2 j en by a nuclear 7r-pulse can be corrected with 12 electron

(29) zr-pulses.
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Abstract

We survey recent work on designing and evaluating quantum computing implementations based on nuclear or bound-electron
spins in semiconductor heterostructures at low temperatures and in high magnetic fields. General overview is followed by a
summary of results of our theoretical calculations of decoherence time scales and spin-spin interactions. The latter were carried
out for systems for which the two-dimensional electron gas provides the dominant carrier for spin dynamics via exchange of
spin-excitons in the integer quantum Hall regime. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction The idea of quantum computing, however, is not

The field of quantum computing has seen explo- just to account for, but to actually utilize the quantum-

sive growth of experimental and theoretical interest. mechanical dynamical behavior. This is not an easy

The promise of quantum computing [ 1-5] has been in task. Quantum mechanics allows for parallelism in

exponential speedup of certain calculations via quan- evolution: one can "process" a linear superposiion

tum parallelism. In Fig. 1, the top flow chart shows of several input states at once, as illustrated in the

the "classical" computation which starts from binary lower flow chart in Fig. 1. The price paid is that

input states and results in binary output states. The ac- coherent processing of information, according to the

tual dynamics is not really that of Newtonian classi- law of quantum mechanics, must be accomplished

cal mechanics. Rather the computation involves many- in systems much larger than atomic-size (or more

body irreversible "gate" device components, made of importantly, with many degrees of freedom). There

semiconductor materials in modem computers, which are numerous conceptual and experimental obstacles

evolve irreversibly, "thermodynamically" according to to accomplishing this task, that have generated a lot

the laws of statistical mechanics. As the size of the of interest, excitement, and new results in computer
modem computer components approaches atomic, the science, physics, and engineering.
many-body quantum behavior will have to be ac- The functioning of a quantum computer involves
counted for in any case [6]. initialization of the input state, then the actual dy-

namical evolution corresponding to computation, and

* Corresponding author, finally reading off the result. Various specific re-
E-mail address: privman@clarkson.edu (V. Privman). quirements for implementation have been identified

0010-4655/02/$ - see front matter © 2002 Elsevier Science B.V All rights reserved.
PI: SOO10-4655(02)00424-1
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Input Irreversible Result uid state NMR approach [8,9] which relies on the

0110010 "thermodynamic" 1100 initial thermal distribution to produce deviation of
or gates - .- or the density matrix from the equal-probability mixture

1100101 0100 state. In most other approaches, the initial state can
be produced by first fully polarizing the quantum bits
(qubits), i.e. putting them in one of the two quantum

Input Reversible Result ? levels. Note that we consider two-state qubits here, re-
ao01 10010> quantum all 000oti> alized, for instance, by spins 1/2 of nuclei or gate-

+ gates o - + or impurity-bound electrons, in applied magnetic field.
The fully polarized state is then subject to gate opera-

1 I 1100100> P10100100> tions to form the desired input state. Part of a quantum-
Figý 1. Comparison of the classical and quantum approaches to com- computing algorithm should be the prescription on

puting. The upper flow chart schematically represents implemen- how to choose the initial state to represent the clas-
tation of a traditional irreversible "classical" computation process, sical information of the input, like the input integer in
where transformation of the input set of bits into the result is ac- the factoring. In most cases, this prescription is easily
complished by a succession of irreversible gates. Owing to their irre- accomplished by single-qubit and two-qubit gates.
versibility, the gates can be connected in space rather than switched The actual dynamical evolution (the process of
on and off at different times. The lower flow chart shows quantum
processing of information, where the input and the final result are computation) in quantum computing is fully reversible
both in superposition states, yielding quantum parallelism. The dy- and nondissipative, unlike classical computing. Much
namics is reversible: there is a one-to-one correspondence between progress has been made in resolving both the con-
the initial and final states. Therefore, number of the input and out- ceptual and computer-engineering "design" issues for
put quantum bit (qubits) is the same even though some of the output quantum computation. Specifically, the computation
qubits (set in a smaller font) might not be used in the final extrac-
tion of the classical result by measurement. The quantum gates are can be carried out [2-5,10-13] by a universal set of
applied in succession by being switched on and of at different times gates: single-qubit rotations and nearly any two-qubit
during the computation. The question mark signifies the difficulty of gate. The gates are not connected in space like in clas-
finding quantum algorithms that retain the power of quantum paral- sical computers but are activated in succession in time,
lelism after measurement needed to read off the final result as clas- to control single-spin dynamics and also switch on and
sical information. off two-spin interactions (we use "spin" and "qubit"

interchangeably).
[2-5]; here we provide only a limited introductory Many interesting matters have been resolved, which
overview, are not reviewed here. These include the understand-

Let us begin by considering the reading off of the ing of how the finiteness of the state space (i.e. two
final result. The reason for the question mark in the states for spin 1/2) replaces the "classical" digitaliza-
lower chart in Fig. 1 is that quantum measurement of tion in quantum computing. Also, the "classical" copy-
the final superposition state can erase the gain of the ing (fan-out) function is not possible in quantum me-
parallel dynamics, by collapsing the wave function. chanics. It is replaced by entanglement with ancillary
Therefore, a key issue in quantum computing has qubits to accomplish redundancy needed for error cor-
been to find those algorithms for which the readout rection [14-20]. Sources of errors due to interactions
of the final state, by way of projecting out a certain with environment in quantum mechanics involve not
average property, still retains the power of the quantum only the usual relaxation (thermalization) but also loss
parallelism. To date, only few such examples are of coherence [21-28]. This quantum decoherence (de-
known [1,3,4,7], the most celebrated being the Shor phasing) can be faster than relaxation because it does
algorithm [ 1 ] for factoring of integers, the invention of not require energy exchange.
which boosted quantum computing from an obscure A conceptually important issue has been the scala-
theoretical field to a mainstream research topic. bility of quantum computing: can one process macro-

The preparation of the initial state does not seem scopically large amounts of information by utilizing
to present a problem for most quantum computing quantum error correction based on redundancy via en-
realizations [2-5], except perhaps the ensemble liq- tanglement with ancillary qubits? The affirmative an-
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Gate
swer to this question has been one of the triumphs of Ext.ml Radaiain

the theory [14-20]. It provided a new paradigm for
emergence of controlled/organized macroscopic be- E ot*M,,e d.ited

havior from microscopic dynamics, on par with the
conceptual possibility of living organisms, which we
observe but cannot yet "manufacture", and million-
gate classical computers which are man-made.

With all these theoretical advances at hand, the next
step is to ask whether a man-made quantum computer
can be realized? There have been several experimental
directions of exploration, most presently are still at the Fig. 2. Schematic illustration of a semiconductor heterostructure

level of one or two qubits, or, for ensemble liquid- quantum information processor. The qubits, represented by the

state NMR, which emulates quantum dynamics by arrows overlaying heavy dots, are spins 1/2 of nuclei or localized

evolution of the density matrix of a large collection electrons. Individual control of the temporal evolution of the spins
can be achieved with the use of external electromagnetic radiation,

of molecules, 5-7 qubits. i.e. NMR or ESR pulses. The spins are also coupled with each

In this introductory survey, we summarize results other via interaction mediated by the two-dimensional electron

of our work on two-spin interactions and spin decoher- gas in the heterostructure, or by other means. The external and

ence in semiconductor heterostructures. In Section 2, internal interactions can be controlled by gates formed on top of
the heterostructure. The external environment, that includes crystal

we consider the spin-based quantum computing pro- lattice, electron gas, defects, impurity potentials, causes relaxation

posals in such systems. Time scales of relaxation and and decoherence of the qubits.

decoherence are addressed in Section 3. Finally, Sec-
tion 4 reports results for models with nuclear spins as
qubits. peratures, was proposed. Most of these ideas also

apply to electron-spin qubits, bound at impurities,
in quantum dots, or directly by gates. Several elab-

2. Spin-based quantum computing in orate solid-state heterostructure quantum computing
semiconductor heterostructures schemes have been proposed in the literature recently

[28,33-41]. There are also other promising proposals

The general layout of a solid-state quantum com- involving surface geometries: superconducting elec-
puter is shown in Fig. 2. Qubits are positioned with tronics [42-46] and electrons on the surface of liquid
precision of few nanometers in a heterostructure. One helium [47].
must propose how to effect and control single-qubit There have been several planned and ongoing
interactions, two-qubit interactions, and explore how experimental efforts [32-36,43-45,48-54] ultimately
the controlled dynamics owing to these interactions aimed at solid-state quantum computing and other
compares to decoherence and relaxation. The proposal quantum information processing realizations. The fi-
must include ideas for implementation of initializa- nal geometry is expected to be most sensitive to the
tion, readout, and gate functions. implementation of readout, because it involves quan-

The first proposal including all these components tum measurement, i.e. supposedly interaction with
was for qubits realized in an array of quantum dots or transfer of information to a macroscopic device.
[29] coupled by electron tunneling. The first spin- Therefore, much of the experimental effort presently
based proposal [30] utilized nuclear spins coupled by has been focused on single-qubit (single-spin) mea-
the two-dimensional electron gas, the latter in the dis- surement approaches.
sipationless integer quantum Hall state [31] that re- The theoretical efforts can be divided into two ma-
quires low temperatures and high magnetic fields. An jors tasks. The process of single-spin measurement
important advancement was the work of Kane [32] must be understood for the readout stage of quantum
where gate control of nuclear-spins of donor impuri- computing. Several conceptual and calculational ad-
ties, separated less than 10 nm and coupled via the vancements have been made in understanding quan-
outer impurity electrons which are bound at low tem- tum measurement [26,32-36,46,50,55,56] as it applies
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to atomic-size qubit systems interacting with environ- bulk. The two-dimensional electron gas can be made
ment and typically "measured" directly by the effect nondissipative in certain ranges of large applied mag-
of the spin-qubit state on transport, or first transferring netic fields at low temperatures, when these conduc-
the spin state to a charge state that is easier to measure, tion electrons in the layer are in the integer quantum
e.g., in single-electron transistors and similar devices. Hall effect state. Owing to this property and also larger

In this survey, we outline results of the second qubit separation allowed, we consider this the most
evaluation task: that of understanding the processes promising approach and focus our present review on
and times scales involved in the dynamics of the actual such systems.
computation. As summarized in Fig. 3, this main The time scale of the qubit-qubit interactions will
stage of the quantum computation process involves be denoted by T nt. This is the time it takes to accom-
control of spins and their interactions. It also involves plish a two-qubit quantum gate, such as CNOT [2-
processes that we do not control and are trying to 5,571. Typically for semiconductor quantum comput-
minimize: relaxation and decoherence. ing proposals, Tint < Text, and in fact the case with

Control of individual qubits is usually accom- Tint << Text has some advantages because one can use
plished externally. For nuclear spins, NMR radio- several fast single-spin flips to effectively switch in-
frequency radiation can be used, see Fig. 2. For elec- teractions of some qubits off over the gate cycle. An-
tron spins, the ESR microwave frequencies are suit- other approach to controlling (on/off) of the two-qubit
able. Such radiation cannot be focused on the scale interactions is by gates, see Fig. 2, which affect the
of 10-100 nm. Instead, selectivity must be accom- two-dimensional electron gas and the localized elec-
plished by independent means. Several proposals ex- tron wavefunctions.
ist, the most promising being control by gates. The ap- However, the same conduction electrons that pro-
plied gate voltage modifies the electronic wave func- vide the qubit-qubit interactions, also expose the
tion changing interactions and therefore resonant fre- qubits to the environment, causing relaxation and de-
quencies. We will denote the time scale of the external coherence. Other interactions will also be present, that
single-qubit control by Text. This can be the Rabi time play no role in the useful quantum-computing dynam-
of a spin flip. ics but contribute to these undesirable processes. Re-

The qubit-qubit interactions are typically assumed laxation and decoherence, and their associated time
to be mediated by electrons that "visit" both qubit scales, are addressed in the next section.
environments. For instance, in liquid-state ensemble
NMR [8,9] with complex molecules, or in the original
model [32] of phosphorous impurity donors in silicon, 3. Time scales of relaxation and decoherence
the wave functions of the valence, outer electrons of
nearby qubits overlap. Specifically, in the P donor The processes of relaxation and decoherence con-
case, the single outer electron of the donor atom sidered here [21-28] are associated with the dynamics
remains bound at low temperatures but has orbital of a small, few-qubit quantum system as it interacts
radius of order 2 nm owing to the large dielectric with the environment. Ultimately, for a large, multi-
constant of the silicon host. Therefore, it is hoped qubit system, many-body quantum chaos-like behav-
that these electrons, in nearby donors positioned as in ior must also be accounted for, and some advances in
Fig. 2, will mediate nuclear-spin qubit interactions, model system studies have been reported recently [5,

Our approach [27,28] allows for larger qubit sep- 58]. Our discussion here will be for the few-qubit case
aration, up to order 100 nm, by relying on the two- mostly because it allows more system-specific investi-
dimensional electron gas in the heterostructure to me- gations for actual quantum-computing proposals.
diate qubit-qubit interactions. This two-dimensional Dynamical processes that are unwanted in quantum
electron gas is usually obtained by spontaneous or computing, because they result from the environmen-
gate-induced transfer of electrons from impurities tal influences rather than from the controlled radiation
to the two-dimensional interface layer in which the pulses and gate potentials, can proceed on various time
qubits are positioned. The source impurities are lo- scales. In fact, it is not guaranteed that processes of
cated at some separation from this layer or in the various types, relaxation/thermalization vs. decoher-
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Initialize
ence/dephasing, can even be unambiguously distinctly

identified. r Control qubits: T1.1
At low temperatures, it is generally hoped that ther- Control and & interactions: Ti., (> T,)

malization, which requires transfer of energy, slows evolve in time
down. If the fastest such processes proceed on time T,, , Ti,, << '2, T, Avoid relaxation: T,
scales of order Ti, then this time increases at low tem- & decoherence: T2 (:S T,)
peratures because there are less excitations (phonons,
electron gas modes, etc.) to couple the small quantum
system to the rest of the solid-state host material. Fig. 3. Evaluation of quantum computing models. One of the

On the other hand, processes that do not require criteria for feasibility of quantum computing in a given physical
flow of energy to or from the environment, can still system is the possibility of initialization of the qubits in the

effect the phase of the quantum-superposition ampli- desired superposition state. Another important design consideration
is control of qubit states and of their interactions. In order to

tudes and cause decoherence. These processes can implement quantum computing effectively, the time scales for

thus proceed faster, on the time scale T2 . While these realization of single and two-qubit logic gates, Text and Tint,
comments seem to suggest that T2 •< Ti, there is no respectively, should be several orders of magnitude smaller than

obvious reason to have generally T2 << Ti at low tem- the time scales of relaxation and decoherence, Tj and T'2. The
peratures. relationships between these time scales are further explained in the

text. Finally, efficient and reliable measurement of the output state

However, if the spectrum of the dominant excita- of the qubits is required for reading off the result of the computation

tions mediating the qubit coupling (both to each other and presently represents a formidable experimental challenge.
and to the host material) has a gap, then we expect that
all the relaxation and decoherence processes will be which is determined not by the systems Hamiltonian
suppressed. Furthermore, the suppression of the relax- (energy), but by the interaction operator with the en-
ation will be exponential, with the Boltzmann factor vironment. This latter process corresponds to loss of
for that energy gap. Then, T2 << TI will be satisfied quantum coherence.
but also, more importantly, the actual values of both As emphasized in Fig. 3, evaluation of a quantum-
time scales will be inordinately large. This was found, computing proposal requires, among other things, es-
theoretically and experimentally, to be the case for tablishing the relation Text, Tint «< T2 , T1 . Owing to
the integer-quantum-Hall-state two-dimensional elec- calculational difficulties, the single-qubit times TI.2
tron gas as mediator of the localized-spin (nuclear, will usually be used, though, as mentioned earlier,
electronic) coupling in semiconductor heterostructures some study of the multi-qubit "quantum chaos" effects
[27,28,59-63]. may be required. For spin-qubit quantum computing

It is important to emphasize that relaxation and de- in semiconductor heterostructures, the relation is typ-
coherence are really many-body properties of the sys- ically Text << Tint < T2 << TI, so the issue is usually
tem plus environment. Entanglement with the environ- how small is the quality ratio Q = Tint/ T 2 .

ment owing to the unwanted couplings results in the The required value of Q, needed for fault-tolerant
small quantum system having no pure wavefunction quantum error correction, depends on the physical
even if initially it was prepared in a pure state. Instead, model of error sources and can be as small as Q =
it can be described by a statistical mixture represented 10-6_10-4, see [15,18-20], or as large as Q = 1/2,
by a density matrix, once the environment is traced see [64]. For the systems of interest to us here, spin
over. qubits in semiconductor structures, the value of Q =

This reduced density matrix of the system is ex- 10-5 is a reasonable working estimate. Thus, we seek
pected to evolve to the thermal one at large times. The systems/conditions with Tint/ T2 < 10-5.
approach to the thermal density matrix, which is di-
agonal in the system-energy basis, defines the time 4. Results for nuclear-spin qubits
scale Ti. If the temperature is low enough, then there
is the expectation, see [25,26] and references therein, In this section we outline results for models of
that for some intermediate time scales, of order T2, quantum computing with nuclear spins as qubits, and
the density matrix becomes nearly-diagonal in a basis with coupling mediated by the two-dimensional elec-
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tron gas in the integer quantum Hall effect state [27, tioned at separations of about 4 nm for the wavefunc-
28,30]. In strong magnetic fields, the spatial states of tions of the outer electrons, which are bound at low
the electrons confined in the two-dimensional layer in temperatures, to overlap significantly.
which the qubits are placed, see Fig. 2, are quantized In our new improved model [28], with nuclear
by the field to resemble free-space Landau levels. The spins coupling to the outer bound electrons which, in
lattice potential and the impurities actually cause for- turn, interact via the two-dimensional electron gas, the
mation of narrow bands instead of the sharp levels, interaction turned out to be of a much longer range as
separated by localized states. As a result, for ranges of compared to the model of [32]: the qubit separation
magnetic field, the localized states fill up while the ex- can be of order 100 nm. Another advantage is that
tended states resemble completely filled integer num- gate control of the individual qubits and of qubit-
ber of Landau levels. These states are further Zeeman qubit interactions is possible. We have carried out
split owing to the electron spin. At low temperatures, extensive perturbative many-body calculations [27,28,
one can find field values such that only one Zeeman 30,68] allowing estimation of Tint and T2 for both
sublevel is completely filled in the ground state, the original quantum-computing proposal [30] and its

The electronic state in such systems, that show improved version [28], where the main improvement
the quantum Hall effect [31] in conductivity, are is in the possibility of the gate control along the
highly correlated and nondissipative. If nuclear spins lines of [32]. The "clock speed" of the improved
are used as qubits, i.e. atoms with nuclear spin 1/2 model is also faster by about two orders of magnitude.
are sparsely positioned in the zero-nuclear spin host, The technical details of these rather cumbersome
such as the zero-nuclear-spin isotope 28 of Si, which calculations are available in the literature and will not
constitutes 92% of natural silicone, then their zero- be reviewed here.
temperature relaxation will be significantly slowed The results are summarized in Table 1. We show
down: experimentally, Tj - 103 sec [62]. estimates of all four relevant time scales for the two

Localized spins, both nuclear and electronic, inter- models introduced earlier. The "original" model [30]
act by exchanges of spin excitons-spin waves con- corresponds to nuclear spins 1/2 introduced at qubits
sisting of a superposition of bound electron-hole pair in atoms without an outer loosely bound electron.
states. The spectrum of these excitations [65,66], ob- The "improved" model corresponds to the case when
served experimentally in [67], has a gap correspond- the outer electron is present and its interaction with
ing to the Zeeman splitting. This gap is the cause of the nuclear spin and the two-dimensional electron gas
slow relaxation and decoherence. The exchange of vir- dominates the dynamics.
tual spin excitons mediates the qubit-qubit interaction The data shown in Table 1 were obtained assuming
and also, via scattering of virtual excitons from im- typical parameters for the standard heterojunctions
purity potentials, relaxation and decoherence of single utilized in quantum-Hall-effect experiments today,
qubits. and qubit separation of 65 nm. Thus, the parameter

The original proposal to use nuclear spin qubits di- values taken [28,30] were more appropriate for the
rectly coupled by the two-dimensional electron gas GaAs system than for Si, even though the main
[30], required positioning the qubits at distances com- isotopes of gallium and arsenic have nuclear spin
parable to several magnetic lengths. The latter is of or- 3/2 and cannot serve as spin-zero hosts. The reason
der 10 nm for magnetic fields of several Tesla. The
qubit-qubit interaction decays exponentially on this Table I
length scale. Recently, we proposed a new improved Time scales of the qubit dynamics for the original [30] and improved

model [28] in which the qubit interactions are me- [28] versions of the nuclear spin quantum computer with interac-

diated via coupling of the two-dimensional electron tions mediated by the two-dimensional electron gas

gas to the outer impurity electrons. This applies if the The original model The improved model

atoms, whose nuclear spins are the qubits, are single- Text O(10-5) sec O(10-5) sec

electron donors such as the isotope 31 of P. These Tint 0(l) sec O(10-2) sec

phosphorous impurities were originally utilized in the T1  O(103) sec 0(10) sec

model of Kane [32] where they must be actually posi- T2 0(10) sec O(10-1) sec
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Abstract

Recent theoretical results suggest that an array of quantum information processors communicating via classical channels
can be used to solve fluid dynamics problems. Quantum lattice-gas algorithms (QLGA) running on such architectures have
been shown to solve the diffusion equation and the nonlinear Burgers equations. In this report, we describe progress towards
an ensemble nuclear magnetic resonance (NMR) implementation of a QLGA that solves the diffusion equation. The methods
rely on NMR techniques to encode an initial mass density into an ensemble of two-qubit quantum information processors.
Using standard pulse techniques, the mass density can then manipulated and evolved through the steps of the algorithm. We
provide the experimental results of our first attempt to realize the NMR implementation. The results qualitatively follow the
ideal simulation, but the observed implementation errors highlight the need for improved control. © 2002 Elsevier Science B.V.
All rights reserved.

1. Introduction sentially a parallel lattice of small quantum informa-
tion processors that share information through clas-

The field of quantum information processing (QIP) sical channels. Such a device offers the experimental
has made steady progress over the past decade, driven simplification that quantum coherences need only be
in part by the realization that some quantum algo- maintained locally within each small quantum proces-
rithms offer a computational advantage over the best sor. Using this architecture, it might be possible to
known classical counterparts [1]. To reach a practical increase the range of problems that small quantum
improvement, however, most quantum algorithms re- processors can tackle by classically stringing many of
quire a large number of qubits coupled quantum me- them together. A type-Il quantum computer may thus
chanically, making physical implementation difficult, serve as an intermediate architecture between few-
Recently, however, it has been suggested that some qubit and large-scale quantum computers.
interesting problems might be solvable by a hybrid In this report, we explore the experimental aspects
classical-quantum device defined as a type-II quan- of building a type-Il quantum computer using nuclear
tum computer [2]. A type-II quantum computer is es- magnetic resonance (NMR) techniques. Quantum in-

formation processing by NMR usually employs a liq-
* Corresponding author. uid sample of molecules containing spin-i nuclei that

E-mail address: dcory@mit.edu (D.G. Cory). is subjected to a strong magnetic field [3]. A typi-
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cal field Bo of -- 10 T creates an energy difference 3. Quantum lattice-gas algorithm
AE between the aligned and anti-aligned spin states
that drives the system to an equilibrium state with net The quantum lattice-gas implementation relies on
magnetization. At room temperature, A E/kT is about mapping each initial occupation probability fj and
10-5, so that the net magnetization is relatively small, f2 into the corresponding single-particle states of two
but, given the large number of molecules in the sam- quantum bits,
pie (- 108), it is still easily detectable. The entire spin
ensemble is accurately described by a reduced density 2I,2(n, m)) = f, 2 (n, m) 1) + 1 - f12(n, i) 10),

matrix of only the intramolecular spin degrees of free- (4)
dom. The ensemble nature of the NMR sample thus where Iql.2(n, m)) are the qubit states and 10) and I1)
makes it inherently applicable to parallel computation. correspond to the eigenstates of a two-level system.
A type-Il architecture can be mapped onto an NMR The resulting two-qubit wave function for a site
sample by creating a correspondence between the sites becomes
of the lattice and spatially distinct spin ensembles. Us-
ing magnetic field gradients and radiofrequency (RF) I* (n, m)) = Vf f2 I11) + ,/fI (1 - f2) I10)
pulses, information in the lattice can be encoded, ma- +v/(1--fl)f210l)+ v(1- f )(l- f2) O0) (5)
nipulated, and read out. As a first test of the NMR im-
plementation, we chose a basic quantum lattice gas al- where j1r(n,m)) spans the Hilbert space of two
gorithm (QLGA) that solves diffusive dynamics in one coupled quantum systems. After initialization, the
dimension. algorithm calls for a collision operation

If*'(n, m)) = UlV*(n, m)) (6)

2. Lattice-gas system that is carried out via unitary evolution by a "square-
root of swap" gate U. The gate U can be written as

The diffusion of a mass density p is governed by /1 0 0 0

ap aD2 P 1 o i + 0at- = t D 1 2 2 (7)
ai t 1 0 7

The above equation corresponds to the macroscopic 2 2 2

effective field theory result. Its relation to the lattice- 0 0
gas dynamics is seen by breaking space into an array in the standard basis. The next step in the computation
of lattice sites with occupation probabilities assigned requires a measurement of the occupation numbers
to each site [4,5]. The ensemble average mesoscopic fA, 2 (n, m) = (ý,'(n, m)Ih 1, 2K1'(n, m)), (8)
dynamics are controlled by the transport equations [2]

fI~nm~l=fIn~m+~[f(n~)-f(n~)], where the number operators 1,2 are defined asfl (n, m + 1) = fl (n, m) + ½[f2 (n, m) - fl (n, m)],I
(2) 0 0 0 2 0 1 0

f2 (n, m +l) =f2(n, m) -- [f2(n, m) -- fl(n, m)], 0i 0 1 0 0 0 0

(3) 0 0 0 ) ( 0 0 (9)

where f1 and f2 represent occupation probabilities The measured occupation numbers f1' and a
and the bracketed terms represent a collision operator. te sie

The number density p is the sum of fl and f2. then streamed to the nearest lattice sites in opposite
The indices n and m correspond to lattice site and directions, as given by
time step, respectively. The connection between the fi (n, m + 1) = fl'(n + 1, m), (10)
diffusion equation and the transport equations may
be seen by taking the Chapman-Enskog expansion f2(n, m + 1)= f(n- 1, m). (11)
of the lattice Boltzmann equation written in terms of The entire diffusion algorithm can be summarized in
occupation probabilities. four steps:
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(1) Initialization of occupation probabilities in each or(n,m) = 1 -EI *(n, m))(V(n, m)I. (13)
spapplictio nct site. a The above pseudopure state transforms identically to

(2) Application of the collision operator, e, at all the corresponding pure state I V(n,m)). Each sub-
sitesa ensemble a (n, in) is in turn composed of a large

(3) Readout of the expectation values of the number number (-1018) of individual molecules distributed
operators. within a slice of a cylindrical sample. More formally,

(4) Determination of the new occupation probabilities the reduced density matrix a (n, in) at a site is
by streaming to nearest neighbors.

a(n, m) = Tr[ T [z - Az(n -

4. NMR implementation 1x IO(Q,m))(k(7,mn)l V (14)

In our particular test, we implemented a two-qubit
diffusion algorithm using a solution of chloroform where I(i, in)) is the nuclear spin state of a single
(I 3CHC13) where the hydrogen and the labeled carbon molecule located at position F, T(z) is the "top hat"
nuclei served as qubits 1 and 2, respectively. Fig. 1 function
shows the energy level diagram of the spins and a 1, Izi << ½,
picture of the molecule. As shown in the diagram, the T(z) = (15)

proton splitting is four times larger than the carbon 0, IzI >
splitting, and both splittings are a small fraction of kT. that selects the relevant spatial slice with thickness Az,

and Tri denotes the partial trace over the spatial degree
4.1. Mapping to spin ensembles of freedom. The variable z represents the correspond-

The first step in creating an experiment to study ing coordinate of the vector i. The states a (n, in) re-

the implementation of type-II quantum computer is quired at the beginning of each update are created

to define a mapping of the theoretically required by applying shaped radiofrequency (RF) pulses in the

quantum states to a real physical system. In the presence of linear magnetic field gradients. This step is

liquid-state NMR case, the required quantum states related to slice-selection in magnetic resonance imag-

I V(n, in)) are physically encoded onto spin ensembles ing (MRI). Fig. 2 depicts the geometrical arrangement

described by d matrices o(n, in) of the slices relative to the gradient and RF coils in the
density NMR probe.]•p~, m) • ~nm).(12)

However, the thermal equilibrium of liquid-state NMR Gradient Coil

systems is a highly mixed state that is not immediately

applicable to quantum computing experiments. As a
result, the thermal equilibrium state must first be reset
to a pseudopure state of the form [6,7] ( RFCoil

Qubit 1,,,

S / V1

V ,Liquid Sample Separated
A, into Spatial Nodes

"C-Chloroform 100) Fig. 2. The cylindrical sample of chloroform employed in this
experiment is addressed in slices by the combined action of

Fig. 1. The picture show the chloroform molecule and the nuclear magnetic field gradients and shaped RF pulses. Each slice represents
spin energy level diagram. a node in the lattice of quantum information processors.
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Diffusion Equation

Pseudopure State Lattice Initialization

H shaped pulse (4 met

H de o p ln (8 dropnns)m ) i •'H!

Z gradient Z gradient Z readout gradientG -] [7(5%.) (5%.) (0.02%•)
G X gradient Y gradiet: i'

(100%) (100%) Z gradient Z gradient
(-10%) (-10%)

Fig. 3. The pulse sequence for a single time step of the algorithm begins with the pseudopure state preparation. Gradients are used to perform
the necessary non-unitary operations required for equalizing the magnetization of the two-spin species and to prepare the pseudo pure state. The
lattice initialization is accomplished by applying weak RF shapes in the presence of a magnetic field gradient in the Z direction. A decoupling
sequence prevents the scalar coupling from interfering with the initialization. The collision operation is performed by a sequence of coupling
delay and strong RF pulses. The collision pulse sequence is applied without a gradient so that all of the spins in the lattice feel the same
operation. Readouts of both the carbon and hydrogen magnetizations are carried out on the hydrogen channel in two separate experiments.

4.2. Control and measurement of spin system Hamiltonian plus appropriate single-spin rotations [8].
The operator U is applied to all the sub-ensembles

In the absence of a magnetic field gradient, the a (n, m) such that
Hamiltonian of the spin system in the doubly-rotating u'(n m) = Ua (n, m)Ut. (18)
frame is

r 1 2 The final steps of the algorithm are to read the oc-
H(t) = -- arJ + [WxIt)ar I + Wy( )I ] cupation numbers encoded in a'(n,m) and to stream2 2 Z X them to nearby sites. The readout is accomplished by

+ [wx(t)ar + ty (t)ay]. (16) noticing that Eq. (8) can be rewritten in terms of the

The first term denotes the scalar interaction between z-Pauli matrices as
the spins, while the remaining terms are the externally- I( 2 2
controlled RF Hamiltonian. The operators of the fl. 2 (n,m) = ,(n,m) 1 VZ '(nm)
form ax~y,. are Pauli spin matrices corresponding to [ (19)
each qubit, and the scalar coupling Hamiltonian is a =
Kronecker product of the single-spin operators. The using the fact that h 1,2  ½1 T l2= - az'). The last
RF part of the Hamiltonian generates arbitrary single equation can be written in the final form
spin rotations with high fidelity when the nutation I 1 2 MIl2
rates W~,y are much stronger than J, the scalar
coupling constant. where the trace has been replaced by the z-magnetiza-

As mentioned before, the collision operator U for tion Mý'2 . The z-magnetization is measured in NMR
the diffusion algorithm is the square-root of swap gate. by applying a "read" 7r/2 pulse and observing the
The unitary operator U can be written as transverse magnetization. The measured values fl.2

2 1 can be streamed on a classical computer and then
U (X [-x"+" Oiy O± y + ±uza?)J (17) reinitialized onto the lattice.

if an irrelevant phase is ignored. Written in this 4.3. Pulse sequence
form, it is clear that U can be decomposed into the
product of three commuting terms. Each term can be The diagram in Fig. 3 shows the main parts of a sin-
implemented by making use of the scalar coupling gle time step of the NMR implementation: pseudopure
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Simulation of Readouts1 ..1.... .. .... 1..... ..... ..
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Fig. 4. The plots show a simulated run of the ideal quantumr lattice gas algorithm for diffusion. The top left plot contains the first step, followed

to the right and then down the rows by subsequent time steps. The dashed lines represent the initialized occupation numbers fi,2 for each spin,
while the solid lines represent the occupation numbers f l ,2 present after the collision. The x-axis labels the node number and runs from I to 16.

Readouts at Each Step
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Fig. 5. The experimental results for the corresponding time steps of the simulations from Fig. 4. Although the general features follow the
simulation, the experimental results are not of high fidelity and suggest a need for more precise control. The x-axis labels the observed spectral
frequency. The actual nodes used in the experiment reside in the region between -200 and 200 Hz. The outlying region is included for reference.
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state preparation, lattice initialization, collision, and 6. Conclusion
readout. The top two lines correspond to operations
on the two qubits (H and C), while the third line shows Ensemble NMR techniques have been success-
the required gradient pulses. The pseudopure state was fully used to study the experimental details involved
prepared by first equalizing the magnetizations of the in quantum information processing. The astronomi-
two spins, followed by a pseudopure state creation se- cal number of individual quantum systems (_-l 018)
quence [9]. The starting occupation numbers for each present in typical liquid-state spin ensembles greatly
time step were then encoded using weak shaped RF facilitates the problem of measuring spin quantum co-
pulses on the two spins. Because the RF power utilized herences. In addition, the ensemble nature of the sys-
was weak relative to the gradient strength, the shape of tem has been successfully utilized to create the nec-
the pulse was determined by taking the Fourier trans- essary pseudo-pure states and to systematically gen-
form of the desired magnetization profile [10]. A de- erate non-unitary operations over the ensemble [12].
coupling sequence was applied simultaneously with In this implementation, we again exploit the ensemble
the RF shape, to average out the effects of the scalar nature, but this time as a means of realizing a lattice
coupling on the RF excitation, of quantum information processors. The implementa-

The collision operator was implemented by decom- tion combines the advantages of quantum computation
posing the total unitary operator into sequences of at each node with parallel computation throughout the
scalar coupling delays and RF pulses. The readout lattice. The large size of the NMR ensemble provides,
was performed by recording the spectra in the pres- in principle, sufficient room to explore large lattices.
ence of a weak gradient. The classical communica- Although achieved experimental results point to the
tion part of the algorithm was absorbed into the en- need for better control, the experiments are a first step
coding operation of the next time step. A linear phase towards realizing the quantum lattice gas algorithm on
ramp was added to the RF shape, effectively shift- a NMR quantum information processor.
ing the frequency of the excitation. Since the data on
the two spins was to be shifted in different directions,
the phase ramps for the two RF pulses had opposite References
slopes.
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